跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佳憲
研究生(外文):Chiahsien Li
論文名稱:利用實驗系統模擬汞與鹵化新興污染物於飛灰中之衍生特性研究
論文名稱(外文):Simulation of the Formation Characteristics for Mercury and Halogenated Emerging Compounds in Fly Ashes by Using a Laboratory System
指導教授:林傑林傑引用關係
指導教授(外文):Chieh Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:65
中文關鍵詞:飛灰五溴酚溴化汞溴化戴奧辛
外文關鍵詞:Fly AshMercuryPBPHgBr2PBDD/Fs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
焚化爐燃燒過程中,汞化合物及戴奧辛之相性轉化及生成關鍵為防治污染課題之一。近年來由於溴化阻燃劑大量運用,燃燒含溴廢棄物在煙道排氣內會衍生出含溴新興污染物,同時排氣中的飛灰可能會透過表面特性將這些溴化污染物吸附。本研究利用實驗系統模擬一般尾氣污染防治設備,添加五溴酚及溴化汞作為溴源,藉此了解袋濾式集塵器及其下游端之現象。研究結果顯示,以相性轉化方面來看,當飛灰添加五溴酚時,尾氣端氣相汞含量由飛灰背景值的2.2 μg提升至11.9 μg,尾氣端氣相百分比從2.2 %上升至11.9 %。而同時添加五溴酚與溴化汞於飛灰中,其尾氣端氣相汞含量由2.2 μg提升至9.1μg,但以氣相汞生成百分率來看,由2.2 %下降至0.1 %。第二階段單獨以相性轉化至煙道氣中的氣相汞形態來看,於實驗160 ℃的溫度下,分別添加五溴酚、溴化汞及同時添加五溴酚及溴化汞,由飛灰中的汞形態主要皆為氣態元素汞,其百分比分別為89.5 % 、88.3%、91.6%,而氧化汞形態則分別為10.5 %、11.7 %、8.4 %。
Combustion of domestic products containing mercury and brominated flame retardants (BFRs) may lead to concurrent emission of mercury and brominated emerging contaminants. Especially, these brominated compounds were adsorbed onto the surface of fly ash particles. Experiments were conducted adding the organic and inorganic bromide sources with bag house fly ashes in a packed bed reactor under real flue gas conditions to simulate the filter cake zone. The results indicated that adding pentabromophenol into the fly ash has significantly enhancement for mercury transform to the flue gas phase. The amount of mercury was increased from 2.2ug to 11.9ug. The relative percentage of mercury was increased from 2.2% to 11.9%. However, adding the pentabromophenol and mercury bromide at the same time cause to increase the amount of mercury in the flue gas from 2.2ug to 9.1ug but the percentage of mercury was decreased from 2.2% to 0.1% in the gas phase. This research reported that the effects of mercury on the phase transformation were enhanced by adding bromide sources. The elemental mercury percentages were 89.5%、88.3% and 91.6% in the fly ash. The oxidized mercury percentages were 10.5%、11.7% and 8.4%, respectively.
摘 要 I
Abstract II
謝 誌 IV
目 錄 V
表目錄 VIII
圖目錄 IX
第 1 章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第 2 章 文獻回顧 3
2.1 汞化合物 3
2.1.1 基本性質 3
2.1.2 環境中汞的來源及分佈 4
2.1.2.1 自然排放 4
2.1.2.2 人為排放 4
2.1.2.3 全球汞排放之分佈 5
2.1.3 環境中汞的循環 7
2.1.4 汞的危害 10
2.1.4.1 元素汞 10
2.1.4.2 無機汞 10
2.1.4.3 有機汞 10
2.1.5 燃燒過程中汞的轉化行為 12
2.2 溴類化合物 16
2.2.1 基本性質 16
2.2.2 溴化合物之應用及現況 16
2.2.3 溴化新興污染物 16
2.3 國內汞與溴化戴奧辛污染排放標準及控制技術 19
2.3.1 活性碳噴入法 19
2.3.2 硫化鈉噴入法 20
2.3.3 濕式洗滌法 20
2.4 飛灰之特性 20
第 3 章 研究方法與設備 22
3.1 研究流程設計 22
3.2 實驗參數設定 23
3.3 實驗系統 24
3.3.1 觸媒填充床反應系統 25
3.3.2 管狀程式控溫系統 25
3.3.3 載流氣體引進系統 25
3.3.4 採樣區 26
3.4 實驗藥品與試劑 27
3.4.1 實驗藥品 27
3.4.2 實驗試劑 28
3.5 實驗分析方法與設備 30
3.5.1 飛灰製備 30
3.5.2 實驗採樣 30
3.5.2.1 吸收液之樣品前處理 30
3.5.2.2 固相樣品之前處理步驟 31
3.5.3 溴化戴奧辛類化合物 31
3.5.3.1 飛灰中溴化戴奧辛之萃取 31
3.5.3.2 樣品萃取液之濃縮 32
3.5.3.3 硫酸酸洗淨化步驟 32
3.5.3.4 多層矽膠管柱淨化步驟 33
3.5.3.5 酸性氧化鋁管柱淨化步驟 34
3.5.3.6 活性碳管柱淨化步驟 35
3.5.4 SEM分析原理與步驟 36
第 4 章 結果與討論 37
4.1 飛灰之空白值 37
4.2飛灰之空白實驗 37
4.3添加五溴酚於飛灰中之汞相性實驗 39
4.4添加五溴酚及溴化汞於飛灰中之汞相性實驗 40
4.5氣端氣相汞形態研究 42
4.5添加五溴酚及溴化汞於飛灰中之溴化戴奧辛生成實驗 44
4.6 實驗前後之飛灰特徵剖析 47
第 5 章 結論與建議 50
5.1 結論 50
5.2 建議 51
參考文獻 52
附錄 60
作者簡介 65

Ballschmiter, K., Zoller, W., Scholtz, C., and Nottrodt, A., 1983, “Destruction of PCDD and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”, Chemosphere, Vol. 12, pp. 585-597.
Calvert, J. G., Lindberg, S. E., 2005, “Mechanisms of Mercury Removal by O3 and OH in the Atmosphere”, Atmospheric Environment, Vol. 39, pp.3355-3367.
Cao, Y., Wang, Q. H., Li, J., Cheng, J. C., Chan, C. C., Cohron, M., and Pan, W. P., 2009, “Enhancement of Mercury Capture by the Simultaneous Addition of Hydrogen Bromide (HBr) and Fly Ashes in a Slipstream Facility”, Environmental Science and Technology, Vol. 43, pp. 2812-2817.
David, G. S., Zhang, Q., and Wu, Y., 2009, “Projection of Global Mercury Emissions in 2050”, Environmental Science and Technology, Vol. 43, pp. 2983-2988.
Dickson, L. C., Lenoir, D., and Hutzinger, O., 1989, “Surface-catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282.
Dickson, L. C., Lenoir, D., and Hutzinger, O., 1992, “Quantitative Comparison of De Novo and Precursor Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incineration Post Combustion Conditions”, Environmental Science and Technology, Vol.26, pp. 1822-1828.
Everaert, K., and Baeyens, J., 2001, “Correlation of PCDD/F Emission with Operating Parameters of Municipal Solid Waste Incinerator”, Journal Air and Waste Management, Vol. 51, pp. 718-724.
Galbreath, K. C., Zygarlicke, C. J., 2000, “Mercury Transformations in Coal Combustion Flue Gas”, Fuel Processing Technology, Vol . 65-66, pp. 289-310
Gullett, B. K., Lemieux, P. M., and Dunn, J. E., 1994, “Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxons and Polychlorinated Dibenzofuran Formation during Waste Combustion”, Environmental Science and Technology, Vol. 28, pp. 107-118.
Hall, B., Schager, P., and Linfqvist, O., 1991, “Chemical Reactions of Mercury in Combustion Flue Gases”, Water, Air, Soil Pollut, Vol. 56, pp. 3-14.
Harrison, R. M., and Rapsomanikis S., 1989, “Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy”, Chapter 10, Ellis Horwood, Chichester, England, pp.299
Holmes, C. D., Jacob, D. J., Yang, X., 2006, “Global Lifetime of Elemental Mercury Against Oxidation by Atomic Bromine in the Free Troposphere”, Geophysical Research Letters, 33, L20808, doi:10.1029/2006GL027176.
Ho, T. C., Shetty, S., Chu, H. W., Lin, C. J., and Hopper, J. R., 2008, “Simulation of Mercury Emission Control by Activated Carbon under Confined-Bed Operations”, Power Technology, Vol. 180, pp. 332-338.
Koester, C., and Hites, R., 1992, “Photodegradation of Polychlorinated Dioxins and Dibenzofurans Adsorbed to Fly Ash”, Environmental Science and Technology, Vol. 26, pp. 502-507.
Kotnik, J., Horvat, H., Mandic, V., Martina, L., 2000, “Influence of the Sostain Coal-Fired Thermal Plant on Mercury and Methyl Mercury Concentration in Lake Velenje Slovenia”, The Science of Total Environment, Vol. 259, pp. 85-95.
Kramlich, J. C., Castiglone, L., 2009. “The Homogeneous Forcing of Mercury Oxidation to Provide Low-cost Capture”, Report No. DE-FG26-03NT41808, Department of Mechanical Eng, University of Washington, Seattle.
Lange N. A., 1976, Handbook of Chemistry, McGraw-Hill, pp. 288-290.
Laudal, D. L., Brown, T. D., and Nott, B. R., 2000, “Effects of Flue Gas Constituents on Mercury Speciation”, Fuel Process Technol, Vol. 65-66, pp. 157-165.
Lee, S. J., Lee, C. W., Serre, S. D., Zhao, Y., Karwowski, J., Hastings, T. W., 2005 “Study of Mercury Oxidation by SCR Catalyst in an Entrained-flow Reactor under Simulated PRB Conditions”, 5th International Conference on Air Quality, Virginia.
Lee, S. S., Lee, J. y., Keener, T. C., 2009, “Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents”, Fuel Processing Technology, Vol. 90, pp. 1314-1318
Levin, L., Allan, M. A., and Yager, J., 2000, “Assessment of Source-receptor Relationships for Utility Mercury Emissions”, In Proceedings of the Air Quality II: Mercury, Trace Elements, and Particulate Matter Conference, pp. A5-3.
Licate, A., Balles, E., Schuttetnhelm, W., 2002, “Mercury Control Slternative for Coal-fired Power Plants”, 10th Annual NAWTEC Conference, Orlando.
Lin, C. J., and Pehkonen, S. O., 1999, “The Chemistry of Atmospheric Mercury: A Review”, Atmospheric Environment, Vol. 33, pp. 2067-2079.
Lin, H. Y., Yuan, C. S., Wu, C. H., Hung, C. H., 2006, “Determination of the Adsorptive Capacity and Adsorption Isotherm of Vaporphase Mercury Chloride on Powdered Activated Carbon Using Thermogravimetric Analysis”, Air & Waste Management Association, Vol. 56, No. 11, pp.1550-1557.
Lin, H. Y., Yuan, C. S., Wu, C. H., Hung, C. H., 2006, “The Adsorptive Capacity of Vapor-phase Mercury Chloride onto Powdered Activated Carbon Derived from Waste Tires”, Air & Waste Management Association, Vol. 56, No. 11, pp. 1558-1566.
Liu, L., Duan, Y. F., Wang, Y. J., Yin, J. J., 2010, “Experimental Study on Mercury Release Behavior and Speciation During Pyrolysis of two Different Coals”, Journal of Fuel Chemistry And Technology, Vol. 38, No. 2, pp. 134-139.
Lopez-Anton, M. A., Yuan, Y., Perry, R. and Mercedes, M. M., 2010, “Analysis of Mercury Species Present during Coal Combustion by Thermal Desorption”, Fuel, Vol. 89, pp. 629-634.
Luijk, R., Akkerman, D. M., Slot, P., and Olie, K., 1994, “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxin and Dibenzofurans in the Catalyzed Combustion of Carbon”, Environmental Science and Technology, Vol. 28, pp. 312-321.
McKay, G., 2002, “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368.
Milligan, M. S., and Altwicker, E., 1993, “The Relationship between De Novo Synthesis of Polychlorinated Dibenzo-p-dioxin and Dibenzofurans and Low-temperature Carbon Gasification in Fly Ash”, Environmental Science and Technology, Vol. 27, pp. 1595-1601.
Nishitani, T., Fukunaga, I., Itoh, H., Nomura, T., 1999, “The Relationship between HCl and Mercury Speciation in Flue Gas from Municipal Solid Waste Incinerations”, Chemosphere, Vol. 39, pp. 1-9.
Ogawa, H., Orita N., Horaguchi, M., Suzuki, Takumi, Okada, M., and Yasuda, S., 1996, “Dioxin Reduction by Sulfur Component Addition”, Chemosphere, Vol. 32, pp. 151-157.
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S., 2006, “Global Anthropogenic Mercury Emission Inventory for 2000”, Atmospheric Environment, Vol. 40, pp. 4048-4063.
Pan, L., and Carmichael, G. R., 2005, “A Two-phase Box Model to Study Mercury Atmospheric Mechanisms”, Environmental Chemistry, Vol. 2, pp. 205-214.
Pan, L., Woo, J. H., Carmichael, G.R.,Tang, Y. H.,Friedli, H. R., Radke, L.F., 2006, “Regional Distribution and Emission of Mercury in East Asia: a Modeling Analysis of Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) Observations”, Journal of Geophysical Research-Atmospheres, Vol. D7, pp. 111.
Pan, L., Carmichael, G. R., Adhikary, B., Youhua, T., David, S., Jung-Hun, W., Friedli, H. R., and Radke, L. F., 2008, “A Regional Analysis of the Fate and Transport of Mercury in East Asia and an Assessment of Major Uncertainties”, Atmospheric Environment, Vol. 42, pp. 1144-1159.
Park, K. S., Seo, Y. C., Lee, S. J.,and Lee, J. H., 2008, “Emission and Speciation of Mercury from Various Combustion Sources”, Power Technology, Vol. 180, pp. 151-156.
Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., 2003, “Status Review of Mercury Control Options for Coal-fired Power Plants”, Fuel Process Technol , Vol. 82, NO. 2-3, pp. 89-165.
Qu, Z., Yan, N., Liu, P., Chi, Y., and Jia, J., 2009, “Bromine Chloride as an Oxidant to Improve Elemental Mercury Removal from Coal-Fired Flue Gas”, Environmental Science and Technology, Vol. 43, pp. 8610-8615.
Quaβ, U., Fermann, M. W., and Broker, G., 2000, “Steps Toward a European Dioxin Emission Inventory”, Chemosphere, Vol. 40, pp. 1125-1129.
Querol, X., Fernandez-Triel, J. L., and Lopez-Sorler, A., 1995, “Trace Element in Coal and Their Behavior during Combustion in a Large Power Station”, Fuel, Vol. 74, pp. 331-340.
Raposo, C., and Windmoller, C. C., 2003, “Mercury Speciation in Fluores Cent Lamps by Thermal Release Analysis”, Waste Manage, Vol. 23, pp. 879-886.
Richer, U., and Birnbaum, L., 1998, “Detailed Investigation of Filter Ashes from Municipal Solid Wasted Incineration”, Waste Manage, Vol. 16, pp. 190-196.
Rolfhus, K. R., Sakamoto, H. E., Cleckner, L. B., Stoor, R. W., Babiarz, C. L., Manolopoulos, H., and Hurley, J. P., 2003, “Distribution and Fluxes of Total and Methymercury in Lake Superior”, Environmental Science and Technology, Vol. 37, pp. 865-872.
Schroeder, W. H., Anlauf, K., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., and Berg, T., 1998, “Arctic Springtime Depletion of Mercury”, Nature, Vol. 394, pp.331-332.
Schroeder, W. H., Munthe, J., 1998. “Atmospheric Mercury—an Overview” , Atmospheric Environment, Vol. 32, pp. 809-822
Sheng-Yong, L., Jian-Hua, Y., Xiao-Dong, L., Ming-Jiang, N., Ke-Fa, C., and Hui-Fen, D., 2007, “Effects of Inorganic Chlorine Source on Dioxin Formation using Fly Ash from a Fluidized Bed Incinerator”, Journal of Environmental Sciences, Vol. 19, pp. 756-761.
Sliger, N. R., Kramlich, J. C., and Marinov, N. M., 2000, “Towards the Development of a Chemical Kinetic Model for the Homogenous Oxidation of Mercury by Chlorine Species”, Vol. 65-66, pp. 423-438.
Srivastava, R., Hutson, N., Martin, B., Princiotta, F., Staudt, J., 2006, “Control of Mercury Emissions From Coal-fired Electric Boilers” , Environmental Science & Technology, Vol. 40, pp. 1385-1393.
Street, D.C., HAO, J., Wu, Y., Jiang, J., Chan, M., Tian, H., Feng, X., 2005, “Anthropogenic Mercury Emission in China”, Atmospheric Environment, Vol. 40, pp. 7789-7806.
Stergarsek, A., Horvat, M., Kotnik, J., Tratnik, J., Frkal, P., and Kocman, D., 2008, “The Role of Flue Gas Desulphurisation in Mercury Speciation and Distribution in a Lignite burning Power Plant”, Fuel, Vol. 87, pp. 3504-3512.
UNEP, 2008, “The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport”, Chemicals Branch, DTIE.
Weber, R., and Kuch, B., 2003, “Relevance of BFRs and Thermal Conditions on the Formation Pathways of Brominated and Brominated-Chlorinated Dibenzodioxins and Dibenzofurans”, Environment International, Vol. 29, pp. 699-710.
Weiss-Penzias, P., Jaffe, D. A., McClintick, A., Prestbo, E. M., Landis, M. S., 2003. “Gaseous Elemental Mercury in the Marine Boundary Layer: Evidence for Rapid Removal in Anthropogenic Pollution”, Environmental Science and Technology , Vol. 37, No. 17, pp. 3755-3763.
Wey, M. Y., Chao, C. Y., Chen, J. C., and Yu, L. J., 1998, “The Relationship between the Quantity of Heavy Metal and PAHs in Fly Ash”, Air and Waste Manage, Vol. 48, pp. 750-756.
Yan, R., Liang, D. T., Tsen, L., Wong, Y. P., and Lee, Y. K., 2004, “Bench-Scale Experimental Evaluation of Carbon Performance on Mercury Vapour Adsorption”, Fuel, Vol. 83, pp. 2401-2409.
李崇漢,張木彬,1997,「垃圾焚化過程中生成影響因子之回顧」,中央大學環境工程學刊,第3期。
賴易正,2009,利用流體化床探討活性碳及飛灰對氣相氯化汞進行吸/脫附之研究,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。
陳建呈,2009,前驅物對戴奧辛類化合物催化生成效應之研究,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。
鍾孟靜,2009,氯化金屬催化性應對戴奧辛類化合物去氯與加氯之影響,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。
楊彬洲,2010,利用均相氧化機制模擬汞傳輸與排放之研究,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。
楊青翰,2010,利用實驗系統模擬汞與溴新興污染物之衍生轉化特性研究,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top