跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁明煌
研究生(外文):Ming-Huang Weng
論文名稱:血纖維蛋白溶酶系統和基質金屬蛋白酶作為山羊乳腺退化指標之研究
論文名稱(外文):Plasmin system and matrix metalloproteinases as indices of involution of goat mammary gland
指導教授:張釵如
指導教授(外文):Chai-Ju Chang, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:122
中文關鍵詞:血纖維蛋白溶酶系統基質金屬蛋白酶乳腺退化山羊
外文關鍵詞:Plasmin systemmatrix metalloproteinasesmammary glandinvolutiongoat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
血纖維蛋白溶酶系統(plasminogen activator, PA/plasmin system)與基質金屬蛋白酶(matrix metalloproteinases; MMPs)為細胞外基質(extracellular matrix; ECM)與基底膜(basement membrane)裂解之重要蛋白質水解酶,而乳腺退化時組織重建(remodeling)亦需要大量蛋白質水解酶存在。本試驗之目的在探討泌乳期別與乳中PA/plasmin system之關係,並同時比較血漿中及乳中嗜中性白血球PA/plasmin system在不同乳期之變化,以確認乳中PA/plasmin system變化的機制。
山羊乳腺於逐漸退化期(gradual involution; GI期)和穩定退化期(steady involution; SI期),乳中plasmin之活性較泌乳期高,而血液中之plasmin濃度在泌乳期與退化期沒有變化,因此退化期乳中 plasmin活性之變化並非來自全身性因素。由於plasmin是參與乳腺退化時分解細胞外基質最直接之酵素,其在退化期活性的增加顯示對於乳腺之退化及重建的重要。Plasminogen的活性在SI期顯著高於極活躍泌乳期(very active lactation; VL期)、低活性泌乳期(less active lactation; LL期)和GI期,其濃度在乳中變化趨勢與plasmin結果相同,而在血液中乳腺退化期間則無顯著差異存在。因此乳中plasminogen可以作為乳中plasmin的主要前驅物。乳中uPA(urokinase-type PA)活性在退化期逹到最高,但同樣在血液中其活性均無明顯差異。與本試驗同時測得之plasmin 和plasminogen之變化趨勢相符,因此,uPA活化plasminogen形成plasmin可能是造成乳中plasmin增加的重要原因。
SI和GI期之乳清MMP-2和MMP-9的活性顯著比VL和LL期高,血液方面無顯著差異。推論退化期間乳中plasmin及uPA活性增加,相對也會提高MMP-9之活性與細胞表面pro-MMP-2活化。退化期之乳中嗜中性白血球釋出MMP-9的能力顯著比泌乳期強。由於退化期uPA活性上升,活化乳中嗜中性白血球,分泌更多MMP-9。羊乳汁中plasmin分子量約為75 kDa,血中plasmin分子量約為85 kDa。羊乳uPA分子量約為60 kDa。山羊乳中plasmin分子量與牛乳88 kDa型之plasmin有些微差異,但是羊乳中之uPA之型式則與牛乳之型式相符。
利用Western blot分析淘汰不搾乳之羊隻乳腺組織uPA及uPAR(uPA-receptor)之表現,主要表現在細胞膜。顯示uPA的活化可能因結合膜上之uPAR而強化,而有較強之plasminogen活化效率,及促進MMPs之分泌。退化期uPA與uPAR在嗜中性白血球表現均增加。由於uPA可以經由uPAR之路徑增加自己之表現,所以當乳中uPA增多時,乳中嗜中性白血球之uPA與uPAR之表現也因此增加。
綜合本研究之結果證明,由於乳腺退化時期組織uPA與uPAR表現量增加,強化plasminogen轉變為plasmin之能力,同時也提升乳中MMP-9與MMP-2之活性;也因為退化期乳汁中uPA量增加,刺激乳中嗜中性白血球uPA與uPAR量表現增加,更活化嗜中性白血球而釋出更多MMP-9活性,因此PA/plasmin system與MMP二者呈現層層(cascade)互相調控之關係,所以乳腺退化PA/plasmin system與MMP共同參與乳腺之退化過程,其活性之變化成為乳腺退化程度之明顯指標。
Plasminogen activator(PA)/plasmin system and matrix metalloproteins(MMPs)are vital proteases which breakdown extracellular matrix(ECM)and basement membrane. Large amount of proteolysis is required for tissue remodeling during involution of mammary gland. The present study explored the activity of PA/plasmin system at various lactation states. Furthermore their activities in plasma and milk neutrophils were also compared to establish the sources of variation in PA/plamsin activity in milk of goat.
Plasmin activity in milk of goat was significantly higher(P < 0.05)in involution stage(including gradual involution; GI and steady involution; SI)than lactation stage but not for plasma. Therefore, the change in plasmin activity of milk was not systemic. Plasmin seemed directly participate in ECM breakdown of mammary gland during involution, and served a very important role in tissue remodeling. Plasminogen activity in milk of SI stage was higher(P < 0.05) compare to those of very active latation(VL), less active lactation and GI stage but not in plasma. Plasminogen might be supplied as abundant precursor of plasmin during involution of mammary gland. Urokinase-PA(uPA)activity in milk of goat displayed the similar tendency as plasmin and plasminogen. Since uPA activated plasminogen to plasmin that contributed the increased plasmin activity in mammary gland during involution.
Activities of MMP-2 and MMP-9 in milk of SI and GI were higher(P < 0.05)compare to those of VL and LL, but not in plasma. During involution, the increased activity of plasmin and uPA enhanced the activation of pro-MMP-9 and pro-MMP-2 in milk. Also, the release of MMP-9 from milk neutrophils was higher(P < 0.05) at involution stage compare to lactation stage. It is suggested that the increased activity of uPA during involution further stimulated the released of gelatinase from milk neutrophils. The results of zymography showed that plasmin in milk and plasma were approximately 75 kDa and 85 kDa in molecular weight, respectively. uPA in milk was approximately 60 kDa. The type of plasmin in milk of goats were slightly different from the 88 kDa plasmin of cow milk but the type of uPA in milk of these two species were similar.
Study of the expression of uPA and uPAR(uPA-receptor) in mammary tissue of dried goats using Western blot analysis indicated that both expressed mostly in plasma membrane. uPA bound to uPAR on cell membrane was enhanced in activity towards plasminogen activation and gelatinase release. Expressions of uPA and uPAR on neutrophils from milk were also increased during involution stage. uPA up-regulates its own expression via the uPAR pathway. Therefore, increase uPA in milk elevated, the expression of both uPA and uPAR on milk neutrophils.
The results of the present study suggest that the expression of uPA and uPAR in mammary tissue of involution satge increased to enhance the conversion of plasminogen to plasmin. Simultaneously, MMP-2 and MMP-9 activity in milk were also elevated by uPA. In turn, increase uPA activity in milk during involution stage stimulated uPA and uPAR expression on neutrophils which further released more MMP-9. Therefore, the cascades interplayed by PA/plasmin system and MMPs within mammary gland during involution work together to promote the process of tissue regression. Changes in activity of these proteases are reliable indicators of the extent of mammary involution.
壹、中文摘要 I
貳、前言 3
參、文獻檢討 4
一、乳腺之結構 4
二、泌乳功能維持 4
三、乳腺退化(involution)與細胞凋亡(apoptosis) 6
四、乳汁中之蛋白質酶 10
五、Plasminogen 和plasmin構造及功能性 11
(一)乳汁中plasmin之特色 11
(二) Plasmin inhibitor 14
六、PA和PAI結構及功能性 14
七、uPA-receptor(uPAR)結構及調控 17
八、基質金屬蛋白酶(Matrix Metalloproteinases; MMPs) 21
(一) MMPs之家族成員 22
(二) MMPs之基本結構 23
(三) MMPs活性之調節 24
(四) MMPs於乳腺退化及癌症發展所扮演之角色 27
肆、材料與方法 30
一、試驗動物與飼養管理 30
二、試驗藥品 30
三、嗜中性白血球之分離 33
(一)血液 33
(二)乳汁 33
四、分離乳腺實質細胞之細胞膜與細胞質液 34
五、製備嗜中性白血球萃取液(cell lysate) 34
六、羊乳中plasmin和plasminogen之萃取 35
七、Plasmin zymography 36
八、Plasminogen activator zymography 38
九、Gelatinase zymography 38
十、Plasmin chromogenic Assay 39
十一、Plasminogen chormogenic assay 40
十二、uPA chromogenic assay 40
十三、Western blotting for uPA and uPAR 40
十四、蛋白質定量分析 41
十五、統計分析 42
伍、結果 43
一、山羊泌乳期與退化期之定義及乳中可沈澱酪蛋白在期間之分布 43
二、山羊泌乳期與退化期乳汁和血液中plasmin活性之比較 46
(一)乳汁中plasmin活性 46
(二)血液中plasmin活性之比較 53
三、山羊泌乳期與退化期乳汁和血液中plasminogen活性之比較 58
(一)乳汁中plasminogen活性之比較 58
(二)血液中plasminogen活性之比較 61
四、山羊泌乳期與退化期乳汁和血液中uPA活性之比較 65
(一)乳汁中uPA活性之比較 65
(二)血液中uPA活性之比較 72
五、泌乳期與退化期乳汁和血液中gelatinase活性之比較 76
(一)乳汁中gelatinase活性之比較 76
(二)血液中gelatinase活性之比較 80
六、泌乳期與退化期乳汁中嗜中性白血球gelatinase活性之比較 83
七、利用Western blot 偵測乳腺組織、嗜中性白血球uPAR和uPA表現及
確立乳中之uPA表現 83
(一)退化期乳腺組織uPAR和uPA之表現及與其化組織之比較 86
(二)不同乳期乳中嗜中性白血球uPAR和uPA之表現 86
(三)乳中uPA之表型確認 87
陸、討論 92
柒、結論 101
捌、參考文獻 103
玖、英文摘要 121
陳英翰。2001。探討人類血管靜止蛋白表現型腫瘤細胞對腫瘤生長能力之影響。碩士論文。國立成功大學。台南市。
Andreasen, P. A., B. Georg, L. R. Lund, A. Riccio, and S. N. Stacey. 1990. Plasminogen activator inhibitors: hormonally regulated serpins. Mol. Cell. Endocrinol. 68:1-19.
Arends, M. J., R. G. Morris, and A. H. Wyllie. 1990. Apoptosis. The role of the endonuclease. Amer. J. Pathol. 136:593-608.
Ashkenas, J., C. H. Damsky, M. J. Bissell, and Z. Werb. 1992. Integrins, signalling, and the remodeling of the extracellular matrix. In: Cheresh D and Mecham R (Editors), The Integrins. Academic Press, New York, pp 79-109.
Aslam, M., and W. L. Hurley. 1997. Proteolysis of milk proteins during involution of the bovine mammary gland. J. Dairy Sci. 80:2004-2100.
Aslam, M., R. Jimenex-Flores, H. Y. Kim, and W. L. Hurley. 1994. Two dimensional electrophoretic analysis of proteins of bovine mammary gland secretions collected during collected during the dry period. J. Dairy Sci. 77:1529-1536.
Athie, F., K. C. Bachman, H. H. Head, M. J. Hayen, and C. J. Wilcox. 1996. Estrogen administration at final milk removal accelerates involution of bovine mammary gland. J. Dairy Sci. 79:220-226.
Bachman, K. C. 1982. Effect of exogenous estradiol and progesterone upon lipase activity and spontaneous lipolysis in bovine milk. J. Dairy Sci. 65:907-914.
Bauman, D. E. 1992. Bovine somatotropin: review of an emerging animal technology. J. Dairy Sci. 75:3432-3452.
Behrendt, N., E. Ronne, and M. Ploug. 1990. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants. J. Biol. Chem. 265:6453-6460.
Blasi, F., N. Behrendt, M. V. Cubellis, V. Ellis, L. R. Lund, M. T. Masucci, L. B. Moller, D. P. Olson, N. Pedersen, M. Ploug, E. Ronne, and K. Dano. 1990. The urokinase receptor and regulation of cell surface plasminogen activation. Cell Differ. Dev. 32:247-254.
Bohuslav, J., V. Horejsi, and C. Hansmann. 1995. Urokinase plasminogen activator receptor, b2-integrins, and Src-kinases within a single receptor complex of human monocytes. J. Exp. Med. 181:1381-1390.
Canete-Soler, R., L. Litzky, I. Lubensky, and R. J. Muschel. 1994. Localization of the 92kd gelatinase mRNA in squamous cell and adenocarcinomas of the lung using in situ hybridization. American Journal of Pathology. 144: 518-527.
Cao, D., I. F. Mizukami, and W. B. Garni. 1995. Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J. Immunol. 154:1817-1829.
Colman, R. W., R. A. Pixley, and S. Najamunnisa. 1997. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J. Clin. Invest. 100: 1481-1487.
Coussens, L. M. and Z. Werb. 1996. Matrix metalloproteinases and the development of cancer. Chemistry&Biology. 3: 895-904.
Dano, K., L. R. Lund, T. H. Bugge, B. S. Nielsen, L. Rønnov-Jessen, C. Lee-Søgaard, and H. Solberg. 1998. Stromal cell involvement and functional overlap in extracellular proteolysis in cancer invasion and non-neoplastic tissue remodeling. Pathophysiology Vol:5 Supplement 1, pp. 139.
Dano, K., P. A. Andreasen, J. Grondahl-Hansen, P. Kristensen, L. S. Nielsen, and L. Skriver. 1985. Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res. 44: 139-266.
Dubuisson, L., A. Monvoisin, B. S. Nielsen, B. L. Bail, P. Bioulac-Sage, and J. Rosenbaum. 2000. Expression and cellular localization of the urokinase-type plasminogen activator and its receptor in human hepatocellular carcinoma. J. Pathol. 190: 190-195.
Edwards, D. R. and G. Murphy. 1998. Proteses —invasion and more. Nature 394:527-529.
Ehrlich, J. J., J. Keijer, T. Preissner, R. K. Gebbink, and H. Pannekoek. 1991. Functional interaction of plasminogen activator inhibitor type 1 (PAI-1) and heparin. Biochemistry 30: 1021-1028.
Ellis, V. and K. Dano. 1992. The urokinase receptor and the regulation of cell surface plasminogen activation. Fibrinolysis 6: 27-34.
Ellis, V., and K. Dano. 1991. Plasminogen activation by Receptor-bound urokinase. Thromb. Haemostasis 17:194.
Ellis, V., N. Behrendt, and K. Danø. 1991. Plasmingen Activation by Receptor-bound Urokinase. A kinetic study with both cell-associalated and isolated receptor. J. Biol. Chem. 266:12752-12758.
Flint, D. J. and M. Gardner. 1994. Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion by maintenance of mammary deoxyribonucleic acid content and tight junction status. Endocrinology 135:1119-1124.
Flint, D. J., E. Tonner, J. Beattie, and D. Panton. 1992. Investigation of the mechanism of action of growth hormone in stimulating lactation in the rat. J. Endocr. 134:377-383.
Fredenburgh, J. C. and M. E. Nesheim. 1992. Lys-plasminogen is a significant intermediate in the activation of Glu- plasminogen during fibrinolysis in vitro. J. Biol. Chem. 267: 26150 - 26156.
Gething, M. J., B. Adler, J. A. Boose, R. D. Gerard, E. L. Madison, D. McGookey, R. S. Meidell, L. M Roman, and J. Sambrook. 1988. Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO (Eur. Mol. Biol. Organ.) J. 7:2731-2740.
Giancotti, F. G. and E. Ruoslahti. 1990. Elevated levels of the a5b1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 849-859.
Giannelli, G., J. Falk-Marzillier, O. Schiraldi, W. G. Steler-Stevenson, and V. Quaranta. 1997. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science 277: 22-228.
Gilmore, J. A., H. Jeffrey, B. Z. White, and I. Politis. 1995. Effects of stage of lactation and somatic cell count on plasminogen activator activity in bovine milk. J. Dairy. Res. 62:141-145.
Ginestra, A., S. Monea, G. Seghezzi, V. Dolo, H. Nagase, P. Mignatti, and M. L. Vittorelli. 1997. Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J. Biol. Chem. 272:17216-17222.
Godar, S. and H. Stockinger. 2000. CD87. J Biol. Regul. Homeost. Agents 14: 324-6.
Goetzl, E. J., M. J. Banda, and D. Leppert. 1996. Matrix metalloproteinases in immunity. J. Immunol. 156:1-4.
Gong, Y., S. Kim, J. Felez, D. K. Grella, and F. J. Castellino. 2001. Conversion of glu-plasminogen to lys-plasminogen is necessary for optimal stimulation of plasminogen activation on the endothelial cell surface. J. Biol. Chem. 276: 19078-19083.
Gross, J. and C. M. Lapiere. 1962. Collagenolytic activity in amphibian tissue: a tissue culture assay. Proc. Natl. Acad. Sci. USA 54:1197-1204.
Gum, R., E. Lengyel, J. Juarez, J. H. Chen, H. Sato, M. Seiki, and D. Boyd. 1996. Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase —independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. J. Biol. Chem. 271:10672-10680.
Hall, S. W., J. E. Humphries, and S. L. Gonias. 1991. Inhibition of cell surface receptor-bound plasmin by α2-antiplasmin and α2-macroglobulin. J. Biol. Chem. 266: 12329-12336.
Haslam, S. Z. 1988. Cell to cell interaction and normal mammary gland function. J. Dairy Sci. 71:2843-2854.
Heegard, C. W., J. H. White, B. Zavizion, J. D. Turner, and I. Politis. 1994. Production of various forms of plasminogen activator and plasminogen activator inhibitor by cultured mammary epithelial cells. J. Dairy Sci. 77:2949.
Higazi, A. A., R. L Cohen, J. Henkin, D. Kniss, B. S. Schwartz, and B. Cines. 1995. Enhancement of the enzymatic activity of single-chain urokinase plasminogen activator by soluble urokinase receptor. J. Biol. Chem. 270 : 17375-17380.
Hoeben, D., C. Burvenich, and R. Heyneman. 1997. Influence of antimicrobial agents on bactericidal activity of bovine milk polymorphonuclear leukocytes. Vet. immunol. immunopathol. 56:271-282.
Holmes, W. E., L. Nelles, H. R. Lijnen, and D. Collen. 1987. Primary structure of human α2-antiplasmin, a serine protease inhibitor(Serpin). J. Biol. Chem. 262: 1659-1664.
Holst, B. D., W. L. Hurley, and D. R. Nelson. 1987. Involution of the bovine mammary gland: histological and ultrastructural changes. J. Dairy Sci. 70:935-944.
Hooley, R. D., J. J. Campbell, and J. K .Findlay. 1978. The importance of prolactin for lactation in the ewe. J. Endocr. 79:301-310.
Hoyer-Hansen G., E. Ronne, and H. Solberg. 1992. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J. Biol. Chem. 267:18224-18229.
Huang, S., L. New, Z. Pan, J. Han, and G. R. Nemerow. 2000. Urokinase Plasminogen Activator/Urokinase-specific Surface Receptor Expression and Matrix Invasion by Breast Cancer Cells Requires Constitutive p38 Mitogen-activated Protein Kinase Activity. J. Biol. Chem. 275: 12266 - 12272.
Hurley, W. L. 1989. Mammary gland function during involution. J. Dairy Sci. 72:1637-1646.
Hurley, W. L. and J. J. Rejman. 1993. Bovine lactoferrin in involuting mammary tissue. Cell Biol. Int. 17:283-289.
Hurley, W. L., M. Aslam, H. M. Hegarty, and A. Morkoç. 1994a. Synthesis of lactoferrin and casein by explants of bovine mammary tissue. Cell Biol. Int. 18:629-637.
Hy, M., R. Semnani, and I. F. Mizukami. 1992. cDNA for Mo3, a monocyte activation antigen, encodes the human receptor for urokinase plasminogen activator. J. Immunol. 148: 3636-3642.
Hynes, R. O. and L. C. Plantefaber. 1991. Integrin receptors for extracellular matrix and their involvement in oncogenic transformation. In: Brugge J, Curran T, Harlow E & McCormick, F (Editors), Origins of Human Cancer: A Comprehensive Review. Cold Spring Harbor Laboratory Press, Plainview, N.Y. 297-307.
Karg, H., and D. Schams. 1974. Prolactin release in cattle. J. Reprod. Fert. 39:463-472.
Kasai, S., H. Arimura, M. Nishida, and T. Suyama. 1985. Primary structure of single-chain pro-urokinase. J. Biol. Chem. 260: 12382-12389.
Kerr, J. F. R., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239-257.
Kindzelskii, A. L., M. M. Eszes, R. F. Todd, and H. R. Petty. 1997. Proximity oscillations of complement type 4(axb2)and urokinase receptors on migrating neutrophils. Biophysical J. 73:1777-1784.
Knight, C. H. and M. Peaker. 1984. Mammary development and regression during lactation in goats in relation to milk secretion. Q. J. Exp. Physiol. 69:331-337.
Knight, C. K. and C. J. Wilde. 1993. Mammary cell changes during pregnancy and lactation. Livestock Production Science 35:3-19.
Kobayashi, H., M. Schmitt, L. Goretzki, N. Chucholowski, J. Calvete, M. Kramer, W. A. Gunzler, F. Janicke, and H. Graeff. 1991. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (pro-uPA). J. Biol. Chem. 266: 5147-5152.
Kratzschmar, J., B. Haendler, S. Kojima, D. B. Rifkin, and W. D. Schleuning. 1993. Bovine urokinase-type plasminogen activator and its receptor: cloning and induction by retinoic acid. Gene. 125:177.
Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227:680-685.
Lee, S. W., V. Ellis, and D. A. Dichek. 1994. Characterization of plasminogen activation by glycosylphosphatidylinositol-anchored urokinase. J. Biol. Chem. 269 : 2411-2418.
Li, C., J. Zhang, Y. Jiang, V. Gurewich, Y. Chen, and J. Liu. 2001. Urokinase-type plasminogen activator up-regulates its own expression by endothelial cells and monocytes via the uPAR pathway. Thrombosis Research 103 : 221-232.
Li, X., X. Zhao, and S. Ma. 1999. Secretion of 92 kDa gelatinase(MMP-9)by bovine neutrophils. Vet. Immunol. Immunopathol. 67:247-258.
Longstaff, C. and P. J. Gaffney. 1991. Serpin-serine protease binding kinetics: alpha 2-antiplasmin as a model inhibitor. Biochemistry 30:979-986.
Lu, D. D. and S. S. Nielsen. 1993. Isolation and characterization of native bovine milk plasminogen activators. J. Dairy Sci. 76:3369-3383.
Lund, L. R., J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb. 1996. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122: 181-193.
Lund, L. R., S. F. Bjorn, M. D. Sternlicht, B. S. Nielsen, H. Solberg, P. A. Usher, R. Osterby, I. J. Christensen, R. W. Stephens, T. H. Bugge, K. Dano, and Z. Werb. 2000. Lactational competence and involution of the mouse mammary gland require plasminogen. Development 127: 4481-4492.
Makowski, G. S. and M. L. Ramsby. 1996. Calibrating gelatin zymograms with human gelatinase standards. Anal. Bio. Chem. 236: 353-356.
Mazzieri, R., L. Masiero, L. Zanetta, S. Monea, M. Onisto, S. Garbisa, and P. Mignatti. 1997. Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J. 16 : 2319-2332.
McCabe, N. P., F. Angwafo Ⅲ, A. Zaher, S. H. Selman, A. Kouanche, and J. Jankun. 2000. Expression of soluble urokinase plasminogen activator receptor may be related to outcome in prostate cancer patients. Oncology Reports 7: 879-882.
Mignatti, P. and D. B. Rifkin. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiological Reviews 73: 161-195.
Nagase, H. and J. F. Woessner. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494.
Nguyen, G., S. J. Self, C. Camani, and E. K. Kruithof. 1992. Characterization of the binding of plasminogen activators to plasma membranes from human liver. Biochem. J. 287:911.
Nustrat, A. R. and H. A. Chapman. 1991. An autocrine role for urokinase in phorbol ester-mediated differentiation of myeloid cell lines. J. Clin. Invest. 87:1091-1097.
Oguma, K. R. Kano, and A. Hasegawa. 2000. In vitro study of neutrophil apoptosis in dogs. Vet. Immunol. Immunopathol. 76:157-162.
Oscar, T. P., C. R. Baumrucker, and T. D. Etherton. 1986. Insulin binding to bovine mammary membranes: comparison of microsomes versus smooth membranes. J. Anim. Sci. 62: 179-186.
Petersen, L. C., L. R. Lund, L. S. Nielsen, K. Dano, and L. Skriver. 1988. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J. Biol. Chem. 263:11189-11195.
Plaut, K., D.E. Bauman, N. Agergaard, and R. M. Akers. 1987. Effect of exogenous prolactin administration on lactational performance of dairy cows. Dom. Anim. Endocrinol. 4:279-290.
Ploug, M., E. Ronne, N. Behrendt, A. L. Jensen, F. Blasi, and K. Dano. 1991. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J. Biol. Chem. 266:1926-1933.
Ploug, M., H. Gardsvoll, T. J. D. Jorgensen, L. L. Hansen, and K. Dano. 2002. Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: a potential target for anti-invasive cancer therapy. Biochemical Society Transactions 30:177-183.
Plow, E. F. and L. A. Miles. 1990. Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ. Dev. 32:293-298.
Pocius, P. A., J. M. Dreels, J. E. Devery-Pocius, and C. R. Baumrucker. 1984. Techniques for preparation of bovine mammary smooth membranes. J. Dairy Sci. 67: 2055-2061.
Politis, I. 1996. Plasminogen Activator System: Implications for Mammary Cell Growth and Involution. J. Dairy Sci. 79:1097-1107.
Politis, I., D. M. Barbano, and R. C. Gorewit. 1992. Distrubution of plasminogen and plasmin in fractions of bovine milk. J. Dairy Sci. 75: 1402-1410.
Politis, I., E. Lachance, E. Block, and J. D. Turner. 1989. Plasmin and plasminogen in bovine milk:relationship with involution. J. Dairy Sci. 72:900-906.
Potempa, J., E. Korzus, and J. Travis. 1994. The serpin superfamily of proteinase inhibitors:structure, function, and regulation. J. Biol. Chem. 269:15957-15960.
Prosser, C. G., I. R. Fleet, and A. N. Corps. 1989. Increased secretion of insulin-like growth factor I into milk of cows treated with recombinantly derived bovine growth hormone. J. Dairy. Res. 56: 17-26.
Quarrie, L. H., C. V. P. Addey, and C. J. Wilde. 1994. Local regulation of mammary apoptosis in the lactating goat. Biochem. Soc. Trans. 22:178S.
Rejman, J. J., W. L. Hurley, and J. M. Bahr. 1989. Enzyme-linked immunosorbent assay of bovine lactoferrin and a 39-kilodalton protein found in mammary secretions during involution. J. Dairy Sci. 72:555-560.
Reuning, U., S. P. Little, E. P. Dixon, E. M. Johnstone, and N. U. Bang. 1993. Molecular cloning of cDNA for the bovine urokinase-type plasminogen activator receptor. Thromb. Res. 72: 59.
Richards, R. C. and G. K. Benson. 1971. Ultrastructural changes accompanying involution of the mammary gland in the albino rat. J. Endocrinol. 5:127.
Rifkin, D. B., K. Moscatelli, J. Bizik, N. Quarto, F. Blei, P. Dennis, R. Flaumenhaft, and P. Mignatti. 1990. Growth factor control of extracellular proteolysis. Cell Differ. Dev. 32:313-318.
Roldan, A. L., M. V. Cubellis, and M. T. Masucci. 1990. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. Embo. J. 9:467-474.
Saksela, O. and D. B. Rifkin. 1988. Cell-associated plasminogen activation: regulation and physiological significance. Annu. Rev. Cell Biol. 4: 93.
Sanchez, L., M. Calvo, and J. H. Brock. 1992. Biological role of lactoferrin. Arch. Dis. Child. 67:657-661.
SAS. 2003. SAS/STAT User’s Guide Release 6.12 ed., SAS INstiute Inc. Gary NC, USA.
Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61-65.
Schaller, J., P. W. Moser, G. A. K. Dannenger-Muller, S. J. Rosselt, U. Kampfer, and E. E. Rickli. 1985. Complete amino acid sequence of bovine plasminogen. Comparison with human plasminogen. Eur. J. Biochem. 149: 267-278.
Schwartz, M. A. 1993. Signalling by integrins: Implications for tumorigenesis. Cancer Research 53: 1503-1506.
Schwartzman, R. A. and J. A. Cidlowski. 1993. Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocrine Reviews 14:133-151.
Seiffert, D., J. Mimuro, R. R. Schleef, and D. J. Loskutoff. 1990. Interactions between type 1 plasminogen activator, extracellular matrix and vitronectin. Cell Differ. Dev. 32:287-292.
Shapiro, S. D. 1998. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol. 10:602-608.
Shetty, S. and S. Idell. 2001. Urokinase induces expression of its own receptor in Beas2B lung epithelial cells. J. Biol. Chem. 276 : 24549-24556.
Shieh, B. and J. Travis. 1987. Reactive site of human α2-antiplasmin. J. Biol. Chem. 262: 6055-6059.
Shoshani, E., G. Leitner, B. Hanochi, A. Saran, N. Y. Shpigel, and A. Berman. 2000. Mammary infection with Staphylococcus aureus in cows: progress from inoculation to chronic infection and its detection. J. dairy res. 67: 155-169.
Sitrin, R. G., P. M. Pan, H. A. Harper, R. F. ToddIII, D. M. Harsh, and R. A. Blackwood. 2000. Clustering of urokinase receptors (uPAR;CD87)induces proinflammatory signaling in human polymorphonuclear neutrophils. The Journal of immunology 165:3341-3349.
Stamenkovic, I. 2000. Matrix metalloproteinases in tumor invasion and metasis. Cancer Biol. 10:415-433.
Stelwagen, K., I. Politis, J. H. White, B. Zavizion, C. G. Prosser, S. R. Davis, V. C. Farr. 1994. Effect of plasminogen, and plasmin in bovine milk. J. Dairy Sci. 77:3577-83.
Stetler-Stevenson, W. G., S. Aznavoorian, and L. A. Liotta. 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology 9: 541-573.
Strange, R., F. Li, S. Saurer, A. Burkhardt, and R. R. Friis. 1992. Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49-58.
Strongin, A. Y., I. Collier, G. Bannkiov, B. L. Marmer, G. A. Grant and G. I. Goldberg. 1995. Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270: 5331-5338.
Sympson, C. J., R. S. Talhouk, C. M.Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb. 1994. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. Journal of Cell Biology 125: 681-693.
Talhouk, R. S., M. J. Bissell, and Z. Werb. 1992. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of Cell Biology 118: 1271-1282.
Talhouk, R. S., R. L. Neiswander, and F. L. Schanbacher. 1990. In Vitro culture of cryopreserved bovine mammary cells on collagen gels:synthesis and secretion of casein and lactoferrin. Tissue and Cell 2295:583-599.
Thomasset, N., C. J. Sympson, L. R. Leif, Z. Werb, and M. J. Bissell. 1994. Overexpression of stromelysin-1 modifies mammary gland stroma in transgenic mice. Molecular Biology of the Cell 5(suppl): 181a.
Tremble, P. M., R. Chiquet-Ehrismann, and Z. Werb. 1994. The extracellular matrix ligands, tenascin and fibronectin collaborate in regulating collagenase gene expression in fibroblasts. Molecular Biology of the Cell 5: 439-453.
Tucker, H. A. 1994. Lactation and its hormonal control. In: The Physiology of Reproduction, Eds Knobil E, Neill JD, 2nd ed, Raven Press, N.Y., pp 1065-1098.
Vassalli, J.-D., D. Baccino, and D. Belin. 1985. A cellular binding site for the Mr 55,000 form of the human plasminogen activator urokinase. J. Cell Biol. 100:86-92.
Vermes, I., C. Haanen, H. Steffens-Hakken, and C. Reutelingsperger. 1995. A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J. Immunol. 184:39-51.
Walker, N. I., R. E. Bennett, and J. F. R. Kerr. 1989. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19-32.
Wei, Y., M. Lukashev, and D. I. Simon. 1996. Regulation of integrin function by the urokinase receptor. Science 273:1551-1555.
Werb, Z. 1997. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91 :439-442.
Werb, Z., P. M. Tremble, O. Behrendtsen, E. Crowley, and C. H. Damsky. 1989. Signal transduction through the fibronectin receptor induces metalloproteinase gene expression. Journal of Cell Biology 109: 877-89.
White, J. H., B. Zavizion, K. O’Hare, J. Gilmore. M. R. Guo, P. Kindstedt, and I. Politis. 1995. Distribution of plasminogen activator in different fractions of bovine milk. J. Dairy Res. 62:115.
Wilde, C. J. and C. H. Knight. 1989. Metabolic adaptations in mammary gland during the declining phase of lactation. J. Dairy Sci. 72:1679-1692.
Wilde, C. J. and M. Peaker. 1990. Autocrine control in milk secretion. J. Agric Sci. 114:235-238.
Wilde, C. J. and W. L. Hurley. 1996. Animal models for study of milk secretion. Topics Mam. Gland Biol. Neoplasia 1:123-134.
Wilde, C. J., A. J. Henderson, C. H. Knight, D. R. Blatchford, A. Faulkner, and R. G. Vernon. 1987. Effects of long-term thrice-daily milking on mammary enzyme activity, cell population and milk yield in the goat. J. Anim Sci. 64:533-539.
Wilde, C. J., C. V. P. Addey, L. M. Boddy, and M. Peaker. 1995. Autocrine regulation of milk secretion by a protein in milk. Biochem. J. 305:51-58.
Wilde, C. J., C. V. P. Addey, P. Li, and D. G. Fernig. 1997. Programmed cell death in bovine mammary tissue during lactation and involution. Exper. Physiol. 82:943-953.
Witty, J. P., J. H. Wright, and L. M. Matrisian. 1995. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Molecular Biology of the Cell 6: 1287-1303.
Witty, J. P., S. McDonnell, K. J. Newell, P. Cannon, M. Navre, R. J. Tressler, and L. M. Matrisian. 1994. Modulation of matrilysin level in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Research 54: 4805-4812.
Woessner, J. F. 1991. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5:2145-2154.
Wyllie, A. H., J. F. R. Kerr, and A. R. Currie. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251-306.
Zachos, T., I. Politis, R. C. Gorewit, and D. M. Barbano. 1992. Effect of mastitis on plasminogen activator avtivity of milk somatic cells. J. Dairy Res. 59: 461-467.
Zamarron, C., H. R. Linjen, and D. Collen. 1984. Kinetics of the activation of plasminogen by natural and recombinant tissue-type plasminogen activator. J. Biol. Chem. 259: 2080.
Zavizion, B., C. W. Heegard, J. White, F. Cheli, and I. Politis. 1996. Synthesis of plasminogen activator inhibitor 1 by bovine mammary epithelial and myoepithelial cell lines. J. Dairy Res. 63: 451-458.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top