|
Bibliography [1] S. B. Akers, D. Harel and B. Kirshnamurthy, The star graph: An attractive alternative to the n-cube, in: Proceedings of the International Conference on Parallel Processing, St. Charles, Illinois, pp. 393—400, 1987. [2] S. B. Akers and B. Kirshnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers, Vol. 38 (4), pp.555—565, 1989. [3] N. Alon, J. Balogh, B. Bollobas, and T. Szabo, Game domination number,Discrete Mathematics, Vol. 256 (1-2), pp. 23—33, 2002. [4] S. Arumugam and R. Kala, Domination parameters of star graph, Ars Combinatoria, Vol. 44, pp. 93—96, 1996. [5] R.B. Allan and R. Laskar, On domination and independent domination number of a graphs, Discrete Mathematics, Vol. 23 (1-3), pp. 73—76, 1978. [6] V. Bafna, P. Berman and T. Fujito, Constant ratio approximations of the weighted feedback vertex set problem, in: Proceedings of the 6th International Symposium on Algorithms and Computation (ISAAC95),in: Lecture Notes in Computer Science, Vol. 1004, Springer, Berlin, 1995, pp. 142—151. [7] V. Bafna, P. Berman and T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM Journal on Discrete Mathematics, Vol. 12 (3), pp. 289—297, 1999. [8] J. Bar-Ilan, G. Kortsarz and D. Peleg, How to allocate network centers, Journal of Algorithms, Vol. 15 (3), pp.385—415, 1993. [9] A.E. Barkauskas and L.H. Host, Finding ecient dominating sets in oriented graphs, Congressus Numerantium, Vol. 98, pp.27—32, 1993. [10] R. Bar-Yehuda, D. Geiger, J.S. Naor and R.M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference, SIAM Journal on Computing, Vol. 27 (4), pp. 942—959, 1998. [11] R. Bar-Yehuda and U. Vishkin, Complexity of finding k-path-free dominating sets in graphs, Information Processing Letters, Vol. 14 (5), pp.228—232, 1981. [12] S. Bau, L.W. Beineke, Z. Liu, G. Du, and R.C. Vandell, Decycling cubes and grids, Utilitas Mathematica , Vol. 59, pp. 129—137, 2001. [13] L.W. Beineke and R.C. Vandell, Decycling graphs, Journal of Graph Theory, Vol. 25 (1), pp.59—77, 1997. [14] L. Brunetta, F. Maoli, and M. Trubian, Solving the feedback vertex set problem on undirected graphs, Discrete Applied Mathematics, Vol. 101 (1-3), pp.37—51, 2000. [15] F. Buckley and F. Harary, Geodetic games for graphs, Quaestiones Mathematicae, Vol. 8, pp.321—334, 1986. [16] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990. [17] F. Buckley, F. Harary, and L.V. Quintas, Extremal results on the geodetic number of a graph, SCIENTIA Series A: Mathematical Sciences, Vol. 2, pp.17—26, 1988. [18] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies, Information Processing Letters, Vol. 83 (5), pp. 275—280, 2002. [19] M.S. Chang, C.H. Lin and C.M. Lee, New upper bounds on feedback vertex nembers in butterflies, in: Proceedings of the 20th Workshop on Combinatorial Mathematics and Computational Theory, Chiayi, Taiwan, pp. 158—162, 2003. [20] M.S. Chang, S.C. Wu, G.J. Chang, and H.G. Yeh, Domination in distancehereditary graphs, Discrete Applied Mathematics, Vol. 116 (1-2), pp.103—113, 2002. [21] G. Chartrand, J.F. Fink, P. Zhang, Convexity in oriented graphs, Discrete Mathematics, Vol. 116 (1-2), pp.115—126, 2002. [22] G. Chartrand, H. Gavlas, F. Harary, and R.C. Vandell, The forcing domination number of a graph, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 25, pp.161—174, 1997. [23] G. Chartrand, F. Harary, and Ping Zhang, Extremal problems in geodetic graph theory, Congressus Numerantium, Vol. 130, pp.157—168, 1998. [24] G. Chartrand, F. Harary, and Ping Zhang, On the geodetic number of an oriented graph, European Journal of combinatorics, Vol. 21 (2), pp.181—189, 2000. [25] G. Chartrand, F. Harary, and Ping Zhang, On the geodetic number of a graph, Networks, Vol. 39 (1), pp.1—6, 2002. [26] G. Chartrand, C.E. Wall, and Ping Zhang, The convexity number of a graph, Graph Combinatorics, Vol. 18 (2), pp.209—217, 2002. [27] G. Chartrand and Ping Zhang, Realizable ratios in graph theory: geodesic parameters, Bulletin of the Institute of Combinatorics and its Applications, Vol. 27, pp.69—80, 1999. [28] G. Chartrand and Ping Zhang, The forcing geodetic number of a graph, Discussiones Mathematicae. Graph Theory, Vol. 19, pp.45—58, 1999. [29] G. Chartrand and Ping Zhang, The geodetic number of an Oriented Graph, European Journal of Combinatorics, Vol. 21 (2), pp.181—189, 2000. [30] G. Chartrand and Ping Zhang, The forcing convexity number of a graph, Czechoslovak Mathematical Journal, Vol. 51 (4), pp.847—858, 2001. [31] G. Chartrand and Ping Zhang, Extreme geodesic graphs, Czechoslovak Mathematical Journal, Vol. 54 (4), pp.771—780, 2002. [32] Eddie Cheng and M.J. Lipman, Disjoint paths in split-stars, Congressus Numerantium, Vol. 139, pp.21—32, 1999. [33] Eddie Cheng and M.J. Lipman, Fault tolerant routing in split-stars and alternating group graphs, Congressus Numerantium, Vol. 137, pp.47—63, 1999. [34] Eddie Cheng and M.J. Lipman, Orienting split-stars and alternating group graphs, Networks, Vol. 35 (4), pp.139—144, 2000. [35] Eddie Cheng and M.J. Lipman, Increasing the connectivity of split-stars, Congressus Numerantium, Vol. 146, pp.97—111, 2000. [36] Eddie Cheng, M.J. Lipman and H.A. Park, An attractive variation of the star graphs: split-stars, Technical Report No. 98-3, Oakland University, 1998. [37] Eddie Cheng, M.J. Lipman, and H.A. Park, Super connectivity of star graphs and split-stars, Ars Combinatoria, Vol. 52, pp.107—116, 2001. [38] S.R. Coorg and C.P. Rangan, Feedback vertex set on cocomparability graphs, Networks, Vol. 26 (2), pp.101—111, 1995. [39] K. Day and A. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Transactions on Parallel and Distributed Systems, Vol. 5 (1), pp.31—38, 1994. [40] Camil Demetrescu and Irene Finocchi, Combinatorial algorithms for feedback problems in directed graphs, Information Processing Letters, Vol. 86 (3), pp.129—136, 2003. [41] F.F. Dragan, F. Nicolai, and A. Brandstadt, Convexity and HHD-free graphs, SIAM Journal on Discrete Mathematics, Vol. 12 (1), pp.119—135, 1999. [42] P. Festa, P.M. Pardalos, and M.G.C. Resende, Feedback set problems, in:Handbook of Combinatorial Optimization, Supplement Vol. A, Kluwer Academic Publishers, pp.209-258, 1999. [43] J.F. Fink, M.S. Jacobson, L.F. Kinch, and J. Roberts, The bondage number of a graph, Discrete Mathematics, Vol. 86 (1-3), pp.47—57, 1990. [44] M. Fischermann and L. Volkmann, Graphs having distance-n dominaiton number half their order, Discrete Applied Mathematics, Vol. 120 (1-3), pp.97—107, 2002. [45] D. Fisher, J.R. Lundgren, S.K. Merz, and K.B. Reid, Domination graphs of tournaments and digraphs, Congressus Numerantium, Vol. 108, pp.97—107, 1995. [46] R. Focardi, F.L. Luccio, and D. Peleg, Feedback vertex set in hypercubes, Information Processing Letters, Vol. 76 (1-2), pp. 1—5, 2000. [47] T. Fujito, Approximating minimum feedback vertex sets in hypergraphs, Theoretical Computer Science, Vol. 246 (1-2), pp.107—116, 2000. [48] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979. [49] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969. [50] F. Harary and M. Livingston, Independent domination in hypercubes, Applied Mathematics Letters, Vol. 6 (3), pp. 27—28, 1993. [51] F. Harary, E. Loukakis, and C. Tsouros, The geodetic number of a graph, Mathematical and Computer Modelling, Vol. 17 (11), pp.89—95, 1993. [52] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998. [53] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998. [54] S.Y. Hsieh, An ecient parallel algorithm for the eecient dominaiton problem on distance-hereditary graphs, IEEE Transactions on Parallel and Distributed Systems, Vol. 13 (9), pp. 985—993, 2002. [55] J.B. Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London, 2001. [56] L. Jia, R. Rajaraman, and T. Suel, An ecient distributed algorithm for constructing small dominating sets, Distributed Computing, Vol. 15 (4), pp.193-205, 2002. [57] Z. Jovanovi´c and J. Miˇsi´c, Fault tolerance of the star graph interconnection network, Information Processing Letters, Vol 49 (3), pp. 145—150, 1994. [58] J.S. Jwo, S. Lakshmivarahan, and S.K. Dhall, Embedding of cycles and grids in star graphs , Journal of Circuits, Systems, and Computers, Vol. 1, pp.43—74, 1991. [59] Y. Kikuchi and Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, in: Proceedings of the 7th Annual International Conference, COCOON, March 2001, in: Lecture Notes in Computer Science, Vol. 2108, Springer, Berlin, 2001, pp. 400—408. [60] Y. Kikuchi and Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, Information Processing Letters, Vol. 86 (2), pp. 79—85, 2003. [61] R. Kr´aloviˇc and P. Ruˇziˇcka, Minimum feedback vertex sets in shae-based interconnection networks, Information Processing Letters, Vol. 86 (4), pp. 191—196, 2003. [62] F.T. Leighton, Introduction to Algorithms and Architectures: Arrays·Trees·Hypercubes, Morgen Kaufmann, San Mateo, 1992. [63] A. Lempel and I. Cederbaum, Minimum feedback arc and vertex sets of directed graphs, IEEE Transactions on Circuit Theory, Vol. 13, (4) pp. 399—403, 1966. [64] Y.D. Liang, On the feedback vertex set problem in permutation graphs, Information Processing Letters, Vol. 52 (3), pp. 123—129, 1994. [65] Y.D. Liang and M.S. Chang, Minimum feedback vertex set in cocomparaibility and convex bipartite graphs, Acta Informatica, Vol. 34 (5), pp. 337—346, 1997. [66] Y.D. Liang and G.J. Chang, Algorithnmic aspect of k-tuple domination in graphs, Taiwanese Journal of Mathematics, Vol. 6 (3), pp. 415—420, 2002. [67] M. Livingston and Q. F. Stout, Distributing resources in hypercube computers, in: Proceedings of the 3rd Conference on Hypercube Concurrent Computers and Applications, ACM, pp. 222-231, Pasadena, CA, Jan. 1988. [68] M. Livingston and Q. F. Stout, Perfect dominating sets, Congressus Numerantium, Vol. 79, pp. 187—203, 1990. [69] C.L. Lu and C.Y. Tang, A linear-time algorithm for the weighted feedback vertex problem on interval graphs, Information Processing Letters, Vol. 61(2), pp. 107—111, 1997. [70] X.Y. Lu, D.W. Wang and C.K. Wong, On the bounded domination number of tournaments, Discrete Mathematics, Vol. 220 (1-3), pp. 257—261, 2000. [71] Flaminia L. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Information Processing Letters, Vol. 66 (2), pp. 59—64, 1998. [72] J.D. Masters, Q. F. Stout, and D. M. Van Wieren, Unique domination in cross-product graphs, Congressus Numerantium, Vol. 118, pp. 49—71, 1996. [73] N. Megiddo and U. Vishkin, On finding a minimum dominating set in a tournament, Theoretical Computer Science, Vol. 61 (1-3), pp. 307—316, 1988. [74] A. Menn and A. K. Somani, An efficient sorting algorithm for the star graph interconnection network, in: Proceedings of the International Conference on Parallel Processing, St. Charles, Illinois, pp. 1—8, 1990. [75] V.E. Mendia and D. Sarkar, Optimal broadcasting on the star graph, IEEE Transactions on Parallel and Distributed Systems, Vol. 3 (4), pp. 389—396, 1992. [76] M. Nec´askov´a, A note on the achievement geodetic games, Quaestiones Mathematicae, Vol. 12, pp.115—119, 1988. [77] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, Princeton University Press, Princeton, 1944. [78] D. Peleg, Distributed data structures: A complexity oriented view, in: Proceedings of the Fourth International Workshop on Distributed Algorithms, Bari, Italy, pp. 71—89, 1990. [79] N. Polat, Convexity and fixed-point properties in Helly graphs, Discrete Mathematics, Vol. 229 (1-3), pp.197—211, 2001. [80] N. Polat, On isometric subgraphs, of infinite bridged graphs and geodesic convexity, Discrete Mathematics, Vol. 244 (1-3), pp.399—416, 2002. [81] K. Qiu, S. G. Akl, and H. Meijer, On some properties and algorithms for the star and pancake interconnection networks, Journal of Parallel and Distributed Computing, Vol. 22 (1-3), pp.16—25, 1994. [82] K. Qiu, H. Meijer, and S. G. Akl, Decomposing a star graph into disjoint cycles, Information Processing Letters, Vol. 39 (3), pp.125—129, 1991. [83] M.E. Riddle, The minimum forcing number for the torus and hypercube, Discrete Mathematics, Vol. 245 (1-3), pp.283—292, 2002. [84] Y. Rouskov, S. Latifiy, and Pradip K Srimaniz, Combinatorial analysis of star graph networks, Technical Report No. CS-95-101, Colorado State University, 1995. [85] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible graphs, SIAM Journal on Computing, Vol. 8 (4), pp. 645—655, 1979. [86] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating Systems Concepts, Sixth Edition, John Wiley and Sons, Inc., New Jersey, 2003. [87] P.J. Slater, R-domination in graphs, Journal of the ACM, Vol. 23, pp.446—450, 1976. [88] P.J. Slater, Domination and location in acyclic graphs, Networks, Vol. 17, pp.55—64, 1987. [89] N. Sridharan, V.S.A. Subramanian, and M.D. Elias, Bounds on the distance two-domination number of a graph, Graphs and Combinatorics, Vol. 18 (3), pp.667—675, 2002. [90] J.L. Szwarcfiter and G. Chaty, Enumerating the kernels of a directed graph with no odd circuits, Information Processing Letters, Vol. 51 (3), pp. 149—153, 1994. [91] U. Teschner, New results about the bondage number of a graph, Discrete Mathematics, Vol. 171 (1-3), pp.249—259, 1997. [92] C.C. Wang, E.L. Lloyd, and M.L. Soa, Feedback vertex sets and cyclically reducible graphs, Journal of the Association for Computing Machinery, Vol. 32, pp.296—313, 1985. [93] Y.L. Wang, On the bondage number of a graph, Discrete Mathematics, Vol.159 (1-3), pp.291—294, 1996. [94] F.H. Wang, J.M. Chang, Y.L. Wang and S.J. Huang, Distributed algorithms for finding the unique minimum distance dominating set in directed split-stars, Journal of Distributed and Computing, Vol. 63 (4), pp. 481—487, 2003. [95] F.H. Wang, J.M. Chang and Y.L. Wang, The upper forcing geodetic numbers of graphs, in: Proceedings of the 20th Workshop on Combinatorial Mathematics and Computation Theory , Chiayi, Taiwan, 2003. [96] F.H. Wang, Y.L. Wang and J.M. Chang, Feedback vertex sets in star graphs, Information Processing Letters, accepted. [97] P.M. Weichsel, Dominating sets in n-cubes, Journal of Graph Theory, Vol. 18 (5), pp. 479—488, 1994. [98] D.B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 2001. [99] D.V. Wieren, M. Livingston, and Q. F. Stout, Perfect dominating sets on cube-connected cycles, Congressus Numerantium, Vol. 97, pp. 51—70, 1993. [100] J. Xu, Topological Structure and Analysis of Interconnection tworks, Kluwer Academic, London, 2001. [101] Ping Zhang, The upper forcing geodetic number of a graph, Ars Combinatoria, Vol. 62, pp.3—15, 2002. [102] V.E. Zverovich. The ratio of the irredundance number and the domination number for block-cactus graphs, Journal of Graph Theory, Vol.29, No.(3), pp.139—149, 1998.
|