跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李志展
研究生(外文):Chih-Chan Lee
論文名稱:表皮生長因子接受器誘導轉錄因子,Sox2,調控肺癌細胞生長及間質-上皮細胞轉化作用
論文名稱(外文):Sox2, an EGFR induced transcriptional factor, modulates cell growth and mesenchymal-epithelial trans-differentiation (MET) of lung cancer.
指導教授:吳成文
指導教授(外文):Cheng-Wen Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:肺癌轉錄因子表皮生長因子接受器自噬性死亡間質-上皮細胞轉化作用
外文關鍵詞:lung cancersox2EGFRautophagic cell deathmesenchymal-epithelial trans-differentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在許多的肺癌案例中,表皮生長因子接受器(EGFR)常常是不正常的表現和不正常的活化;Sox2是負責調節幹細胞自我跟新的一個重要的轉錄因子,並在肺癌中高度的表現;在肺癌中,我們發現利用生長因子(TGF和EGF)可以活化表皮生長因子接受器並誘導Sox2的表現,異位表現表皮生長因子接受器訊息傳遞(EGFR signaling)下游一個重要的蛋白質 - c-Myc,會誘導Sox2的表現;破壞c-Myc則會使Sox2表現量下降,因此我們認為表皮生長因子接受器訊息傳遞所誘導的Sox2表現是藉由c-Myc所調控的;異位表現Sox2會增加肺癌細胞增生及不依賴接觸的生長,破壞Sox2則會降低肺癌細胞的癌化性質;除此之外,我們發現Sox2被破壞的肺癌細胞會走向自噬性細胞死亡(autophagic cell death),但是異位表現Sox2則會使肺癌細胞抵禦由飢餓所引發的自噬性細胞死亡,這些實驗數據說明在肺癌細胞裡,Sox2會誘導癌細胞更易生長;而在老鼠活體實驗中我們發現,過度表現Sox2會增加肺癌細胞腫瘤的生長,相反地,抑制Sox2則會使的肺癌細胞腫瘤無法生長,根據上述的老鼠活體實驗,我們認為Sox2在活體中可以增加腫瘤的生長能力;根據微陣列技術(cDNA microarray)的資料分析,我們發現Sox2會調控表皮生長因子接受器,而根據西方點墨法實驗,可以證實Sox2會誘導表皮生長因子接受器的表現,因此我們認為在肺癌細胞裡Sox2和表皮生長因子接受器形成一個互相調控的迴圈並促使肺癌細胞的生長;另外,異位表現Sox2會誘導肺癌細胞產生間質細胞型態轉換成上皮細胞的型態(mesenchymal-epithelial trans-differentiation),並增加癌症細胞黏附基質的能力,所以,Sox2可能在表皮生長因子接受器下游扮演促使肺癌細胞生長的角色,並且在肺癌的醫療上可以當作一種生物標記或是治療標地物。
Aberrant expression and function of epidermal growth factor receptor (EGFR) is reported in most lung cancer cases. Sox2, a core transcription factor regulating self-renewal of stem cells, is highly expressed in lung cancer. We discovered that EGFR and its ligands (TGF-??nand EGF) induce Sox2 expression in lung cancer. Ectopic expression of c-Myc, a key effector of EGFR signaling, induced Sox2 expression; knockdown of c-Myc decreased Sox2 level in lung cancer, suggesting that EGFR induces Sox2 via a c-Myc dependent pathway. Ectopic expression of Sox2 promoted cell proliferation and anchorage-independent cell growth; knockdown of Sox2 attenuated oncogenic properties of lung cancer. In addition, Sox2-silencing induced autophagic death of lung cancer; overexpression of Sox2 prevented cell from starvation-induced autophagy. These data demonstrates that Sox2 induces oncogenesis of lung cancer. Overexpression of Sox2 promoted tumor growth in xenograft mouse model; knockdown of Sox2 inhibited tumor formation in vivo. These results support the notion that Sox2 enhances tumorigenesis of lung cancer. Through a cDNA microarray analysis for Sox2 target genes, we identified that Sox2 regulates EGFR. Immunoblotting showed that Sox2 induced EGFR expression, suggesting that an EGFR-Sox2-EGFR positive feedback loop exist in lung cancer. In addition, ectopic expression of Sox2 in lung cancer induces mesenchymal-epithelial trans-differentiation and promotes cell-matrix adhesion. Thus, Sox2 may serve as an important effector of EGFR-mediated oncogenesis and provide a novel prognostic biomarker and therapeutic target for lung cancer.
Abstract-------------------------------------------------5
中文摘要(Abstract of Chinese)----------------------------7

Chapter1:Introduction
1.1 Sox2 and lung development----------------------------9
1.2 Sox2 and cancer-------------------------------------10
1.3 Lung cancer and EGFR--------------------------------11
1.4 c-Myc and oncogenesis-------------------------------12
1.5 EGFR and Sox2---------------------------------------13
1.6 Autophagy and cancer--------------------------------14
1.7 Mesenchymal epithelial trans-differentiation--------15
1.8 Project aim-----------------------------------------16

Chapter2:Materials and methods
2.1 DNA plasmid generation------------------------------18
2.2 Cell culture and establish starvation culture condition---------------------------------------------------------18
2.3 Lentiviral Infection--------------------------------19
2.4 RNA extraction and RT-PCR---------------------------20
2.5 Quantitative Real-Time PCR--------------------------21
2.6 Luciferase reporter assay---------------------------22
2.7 Protein extraction and Western blotting------------ 22
2.8 Colony formation----------------------------------- 25
2.9 WST-1 assay---------------------------------------- 25
2.10 BrdU incorporation assay---------------------------26
2.11 Soft agar assay------------------------------------26
2.12 Immunohistochemistry-------------------------------27
2.13 Transmission electron microscopy (TEM)-------------28
2.14 Acridine orange staining---------------------------28
2.15 Wound healing cell migration assay-----------------28
2.16 Cell-matrix adhesion assay-------------------------29
2.17 Xenograft animal model-----------------------------30
2.18 Statistical analysis-------------------------------30

Chapter3:Result
3.1 EGFR signaling induces Sox2 expression in lung cancer-----------------------------------------------------------31
3.2 c-Myc regulates Sox2 expression---------------------31
3.3 Sox2 controls EGFR expression-----------------------32
3.4 Sox2 promotes growth of lung cancer cells-----------33
3.5 Sox2-silencing induces autophagic cell death of lung cancer cells--------------------------------------------33
3.6 Sox2 increases tumor formation of lung cancer cells-34
3.7 Sox2 induces mesenchymal-epithelial trans-differentiation (MET) of lung cancer cells--------------35
3.8 Sox2 promotes cell matrix adhesion------------------36
3.9 Conclusion------------------------------------------36

Chapter4:Discussion
4.1 Discussion------------------------------------------38

Chapter5:Figure legends
Figure1. Sox2 expression is regulated by EGFR signaling.41
Figure2. c-Myc controls Sox2 expression.----------------43
Figure3. Sox2 regulates EGFR expression.----------------45
Figure4. Ectopic expression of Sox2 promotes lung cancer cell growth---------------------------------------------47
Figure5. Sox2-silencing leads to cell growth arrest.----49
Figure6. Sox2-silencing induces autophagy of lung cancer cells.--------------------------------------------------51
Figure7. Effect of Sox2 on tumor formation.-------------54
Figure8. Sox2 induces mesenchymal-epithelial trans-differentiation (MET) of lung cancer. Sox2-silencing leads to cell growth arrest.----------------------------------60
Figure9. Sox2 promotes cell adhesion.-------------------62
Figure10. A model of Sox2 mediated oncogenesis of lung cancer.-------------------------------------------------64
References:--------------------------------------------66


Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and Weinberg, R.A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40, 499-507.

Brown, D.M., and Ruoslahti, E. (2004). Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 5, 365-374.

Bussmann, L.H., Schubert, A., Vu Manh, T.P., De Andres, L., Desbordes, S.C., Parra, M., Zimmermann, T., Rapino, F., Rodriguez-Ubreva, J., Ballestar, E., et al. (2009). A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5, 554-566.

Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4, 118-132.

Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283, 17969-17978.

Chou, Y.F., Chen, H.H., Eijpe, M., Yabuuchi, A., Chenoweth, J.G., Tesar, P., Lu, J., McKay, R.D., and Geijsen, N. (2008). The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135, 449-461.

DiPaola, R.S., Dvorzhinski, D., Thalasila, A., Garikapaty, V., Doram, D., May, M., Bray, K., Mathew, R., Beaudoin, B., Karp, C., et al. (2008). Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate 68, 1743-1752.

Ellis, P., Fagan, B.M., Magness, S.T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M., and Pevny, L. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26, 148-165.

Forstner, M., Breer, H., and Krieger, J. (2009). A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5, 745-757.

Fu, L., Kim, Y.A., Wang, X., Wu, X., Yue, P., Lonial, S., Khuri, F.R., and Sun, S.Y. (2009). Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 69, 8967-8976.

Glinsky, G.V. (2008). "Stemness" genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol 26, 2846-2853.

Gontan, C., de Munck, A., Vermeij, M., Grosveld, F., Tibboel, D., and Rottier, R. (2008). Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 317, 296-309.

Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765.

Herbst, R.S., Heymach, J.V., and Lippman, S.M. (2008). Lung cancer. N Engl J Med 359, 1367-1380.

Hu, G., Chong, R.A., Yang, Q., Wei, Y., Blanco, M.A., Li, F., Reiss, M., Au, J.L., Haffty, B.G., and Kang, Y. (2009). MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15, 9-20.

Hu, Q., Zhang, L., Wen, J., Wang, S., Li, M., Feng, R., Yang, X., and Li, L. (2010). The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 28, 279-286.

Huett, A., Goel, G., and Xavier, R.J. (2010). A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 26, 302-309.

Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721.

Levy-Adam, F., Ilan, N., and Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol.

Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51-63.

Li, X.L., Eishi, Y., Bai, Y.Q., Sakai, H., Akiyama, Y., Tani, M., Takizawa, T., Koike, M., and Yuasa, Y. (2004). Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol 24, 257-263.

Lockshin, R.A., Osborne, B., and Zakeri, Z. (2000). Cell death in the third millennium. Cell Death Differ 7, 2-7.

Lu, Y., Futtner, C., Rock, J.R., Xu, X., Whitworth, W., Hogan, B.L., and Onaitis, M.W. (2010). Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 5, e11022.

Ma, W., Yan, R.T., Li, X., and Wang, S.Z. (2009). Reprogramming retinal pigment epithelium to differentiate toward retinal neurons with Sox2. Stem Cells 27, 1376-1387.

Prochownik, E.V. (2008). c-Myc: linking transformation and genomic instability. Curr Mol Med 8, 446-458.

Ragge, N.K., Lorenz, B., Schneider, A., Bushby, K., de Sanctis, L., de Sanctis, U., Salt, A., Collin, J.R., Vivian, A.J., Free, S.L., et al. (2005). SOX2 anophthalmia syndrome. Am J Med Genet A 135, 1-7; discussion 8.

Reymann, S., and Borlak, J. (2008). Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: identification of the c-myc regulatory gene network. BMC Syst Biol 2, 46.

Riely, G.J., Kris, M.G., Rosenbaum, D., Marks, J., Li, A., Chitale, D.A., Nafa, K., Riedel, E.R., Hsu, M., Pao, W., et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 14, 5731-5734.

Russo, I., Silver, A.R., Cuthbert, A.P., Griffin, D.K., Trott, D.A., and Newbold, R.F. (1998). A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization. Oncogene 17, 3417-3426.

Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., and Marshall, C.J. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510-523.

Sato, M., Shames, D.S., Gazdar, A.F., and Minna, J.D. (2007). A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2, 327-343.

Sattler, H.P., Lensch, R., Rohde, V., Zimmer, E., Meese, E., Bonkhoff, H., Retz, M., Zwergel, T., Bex, A., Stoeckle, M., et al. (2000). Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate 45, 207-215.

Savill, J., and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature 407, 784-788.

Schwartz, L.M. (1995). The faces of death. Cell Death Differ 2, 83-85.

Smith, D.M., Patel, S., Raffoul, F., Haller, E., Mills, G.B., and Nanjundan, M. (2010). Arsenic trioxide induces a beclin-1-independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells. Cell Death Differ.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.

Tang, X., Shigematsu, H., Bekele, B.N., Roth, J.A., Minna, J.D., Hong, W.K., Gazdar, A.F., and Wistuba, II (2005). EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 65, 7568-7572.

Tang, X., Varella-Garcia, M., Xavier, A.C., Massarelli, E., Ozburn, N., Moran, C., and Wistuba, II (2008). Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev Res (Phila Pa) 1, 192-200.

Tompkins, D.H., Besnard, V., Lange, A.W., Wert, S.E., Keiser, A.R., Smith, A.N., Lang, R., and Whitsett, J.A. (2009). Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One 4, e8248.

Wang, Q., He, W., Lu, C., Wang, Z., Wang, J., Giercksky, K.E., Nesland, J.M., and Suo, Z. (2009). Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 29, 1233-1241.

Wang, T.C., Cardiff, R.D., Zukerberg, L., Lees, E., Arnold, A., and Schmidt, E.V. (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369, 669-671.

Weihua, Z., Tsan, R., Huang, W.C., Wu, Q., Chiu, C.H., Fidler, I.J., and Hung, M.C. (2008). Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385-393.

West, K.A., Linnoila, I.R., Belinsky, S.A., Harris, C.C., and Dennis, P.A. (2004). Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3'-kinase/Akt pathway in vitro and in vivo. Cancer Res 64, 446-451.

Wilson, M., and Koopman, P. (2002). Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12, 441-446.

Wong, R.W., and Guillaud, L. (2004). The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 15, 147-156.

Yang, S., Park, K., Turkson, J., and Arteaga, C.L. (2008). Ligand-independent phosphorylation of Y869 (Y845) links mutant EGFR signaling to stat-mediated gene expression. Exp Cell Res 314, 413-419.

Yu, Q., Geng, Y., and Sicinski, P. (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017-1021.

Yuan, P., Kadara, H., Behrens, C., Tang, X., Woods, D., Solis, L.M., Huang, J., Spinola, M., Dong, W., Yin, G., et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PLoS One 5, e9112.

Zavadil, J., Bitzer, M., Liang, D., Yang, Y.C., Massimi, A., Kneitz, S., Piek, E., and Bottinger, E.P. (2001). Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98, 6686-6691.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top