跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宜音
研究生(外文):I-Yin Li
論文名稱:以微機電技術製作微波衰減器
論文名稱(外文):Micromachined Microwave Attenuator
指導教授:張培仁
指導教授(外文):P. Z. Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:72
中文關鍵詞:微機電系統微波衰減器多層結構微加工射頻微機電系統
外文關鍵詞:MEMSmicrowaveattenuatormulti-sturcturemicromachinedRF MEMS
相關次數:
  • 被引用被引用:3
  • 點閱點閱:479
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
射頻微機電系統日益受到重視,本論文提出工作頻率30GHz微波衰減器之電路設計、材料探討、電路模擬與微機電微波機械開關之製程整合,並完成微波衰減器之製作與金屬接觸式微波開關之部份製作。
傳統上高頻微波電路以砷化鎵為主要材料,本論文中採用高阻值之矽晶圓與電鍍1μm厚之鎳為傳輸線材料。在傳輸線的選擇上,配合微加工技術採用共平面波導,以得到更好的微波特性。在微波電路模擬上合併使用Microwave Office及Ansoft HFSS兩套軟體。以前者印證微波理論而後者則用來驗證實際尺寸之適用與否。提出以CMOS標準製程為材料之微波衰減器電路設計與後製程之規劃。而在微波開關方面則選用金屬接觸式微波開關,其製程較電容耦合式開關複雜。
在製程方面,完成了微波電路之製程及部份之微機械開關製程。除就多層結構之材料選擇上進行探討,並比較相關製程方式之優劣及整合。提出製程所需注意之事項及相關之製程參數。
This thesis proposes a microwave attenuator at 30GHz. The circuit design, material selection, and simulating of the attenuator are discussed, as well as the compatible process of microwave MEMS mechanical switch. This work completes the implementation of the attenuator, and that of the metal contact-serial switch is partially done.
Unlike conventional high-frequency microwave circuit that takes GaAS as the main transmission line material, this thesis uses high-resistivity silicon wafer and Ni with 1μm in thickness by electrode. To obtain better microwave characteristics, coplan waveguide is adopted with micromachined techniques. Two sets of software, Microwave Office and Ansoft HFSS, are used for simulation, where the former is for the verification of the microwave theory and the latter is for checking the practicability of the scale. In addition, the design of CMOS compatible microwave attenuator and its post-process are proposed. Regarding microwave switch, the metal contact-serial switch is chosen although its process is more complicated than that of tunable capacitance switch.
As for the process, that of microwave circuit is completed while that of micro mechanical switch is partially done. Furthermore, this thesis discusses about the material selection of multiple-layered structure. The pros and cons of difference processes are also compared. Finally, some rules and parameters are shown.
中文摘要i
英文摘要ii
誌謝iii
目錄iv
圖表列vi
第一章 緒論1
1.1 研究動機1
1.2 研究方法3
第二章 導論4
2.1微機電系統的發展4
2.2射頻微機電系統6
2.3微波衰減器7
2.4 微波開關8
第三章 文獻回顧11
3.1微波衰減器之文獻回顧11
3.1.1 使用FET11
3.1.2 使用二級體11
3.1.3 光學式的微波衰減器12
3.1.4 利用材料做衰減12
3.1.5 使用FET12
3.1.6 使用二極體13
3.2 微波開關之文獻回顧14
3.2.1 金屬接觸式15
3.2.2 電容耦合式16
第四章 設計原理18
4.1 微波衰減器之原理18
4.1.1 耦合器之原理18
4.1.2 微波衰減器之原理20
4.2 微波開關之原理21
4.3 多層結構之設計原理22
4.3.1 電阻材料之選定22
4.3.2 傳輸線種類的決定23
4.3.3 傳輸線之介電層種類之決定23
4.3.4 傳導層之選擇24
4.3.5 犧牲層種類之決定24
4.3.6 開關接觸點24
4.3.7 介電層之選擇24
4.3.8 上電極25
第五章 電路設計26
5.1 設計流程26
5.2 微波衰減器之設計27
5.2.1 高阻值基板微波衰減器之設計27
5.2.2 1P4M CMOS 微波衰減器之設計29
第六章 製程34
6.1 沉積電阻35
6.2 沉積傳導層37
6.3 定義共平面波導37
6.4 電鍍共平面波導39
6.5 犧牲層及固定埠之製程42
6.6 開關接觸點之製程45
6.7 介電層之製程48
6.8 上電極之製程50
6.9 結構釋放之製程52
6.10 各種製程參數之詳細列表53
6.10.1 清潔53
6.10.2 光阻53
6.10.3 蒸鍍(Sputter)53
6.10.4 蒸鍍(E-Beam)54
6.10.5 電鍍54
6.10.6 溼蝕刻(相容性)57
6.10.7 離子反應蝕刻機操作參數58
6.11 光罩58
6.11.1 光罩之設計58
6.11.2 網片之應用58
第七章 實驗結果59
7.1 製程59
7.2 電阻率之量測59
7.3 共平面波導之量測60
7.3.1 微波衰減器60
7.3.2 全斷式波導61
7.3.3 半斷式波導62
第八章 結論與展望63
8.1 微波衰減器63
8.2 未來的展望63
8.2.1 微波電路63
8.2.2 微波開關63
8.2.3 製程63
8.2.4 以CMOS標準製程製作微波衰減器64
參考文獻69
[1]W. S. Ring, I. S. Smith, A. J. Taylor, D Hayward, S. Wrathall and C. A. Park(1998), "Unisolated 2.5GBits Uncooled Gain-Coupled 1300nm DFB Lasers for Low Cost Applications," Electronic Components and Technology Conference, 192-197
[2]Lawrence E. Larson(1999), “Microwave MEMS Technology for Next-Generation Wireless Communications-Invited Paper,” IEEE MTT-S Digest, 1073-1076
[3]Clark T.-C. Nguyen, “Microelectromechanical Devices for Wireless Communications.”
[4]孟憲鈺, “機電系統技術,” 2000
[5]Horny Jye Sun and James Ewan(1990), “A 2-18GHz Monolithic Variable Attenuator Using Novel Triple-Gate MESFETs,” IEEE MTT-S Digest, 777-780
[6]David J. Seymour, David D. Heston, Randall E. Lehmann, and Donna Zych(1990), “X-Band Monolithic GaAs PIN Diode Variable Attenuation Limiter,” IEEE MTT-S Digest, 841-844
[7]Kevin W. Kobayashin, Aaron K. Oki, Donald K. Umemoto, Shimen K. Z. Claxton and Dwight C. Streit(1993), “Monolithic GaAs HBT p-I-n Diode Variable Gain Amplifiers, Attenuators, and Switches,” IEEE Transactions on Microwave Theory and Techniques, 41(12), 2295-2302
[8]S. Iordanescu, G. Simion, C. Anton and A. Muller(1998), “Broadband Microwave PIN Diode Attenuators,” IEEE, 601-604
[9]Stephen E. Saddow and Chi H. Lee(1995), “Optical Control of Microwave-Integrated Circuits Using High-Speed GaAs and Si photoconductive Switches,” IEEE Transactions on Microwave Theory and Techniques, 43(9), 2414-2420
[10]Nabeel A. Riza and Stephen E. Saddow (1995), “Optically Controlled Photoconductive N-Bit Switched Microwave Signal Attenuator,” IEEE Microwave and duided wave letters, 5(12), 448-450
[11]Olivier Acher, Pierre Le Gourrierec, Geraldine Perrin, Philippe Baclet, and Olivier Roblin(1996), “Demonstration of Anisotropic Composites with Tuneable Microwave Permeability Manufactured from Ferromagnetic Thin Films,” IEEE Transactions on microwave theory and techniques, 44(5), 674-684
[12]A. H. Feingold, P. Amstutz, R. L. Wahlers, C. Huang and S. J. Stein(1998), “New PTC and NTC Thick Film Materials for Gigahertz Range Temperature Variable Attenuators,” IEMT/IMC Proceedings, 138-143
[13]D.Roques, JL.Cazaux and M. Pouysegur(1990), “A New Concept to Cancel Insertion Phase Variation in MMIC Amplitude Controller,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 59-62
[14]Hideki Takasu, Chihiro Sakakibera, Minoru Okumura and Susumu Kamibashi(1999), “S-Band MMIC Digital Attenuator with Small Phase Variation,” IEEE, 421-424
[15]Marc E. Goldfarb and Aryeh Platzker(1994), “A Wide Range Analog MMIC Attenuator with Integral 180° Phase Shifter,” IEEE Transactions on Microwave Theory and Techniques, 42(1), 156-158
[16]D. Adler and P. Maritato(1988), “Broadband phase invariant attenuator,” IEEE MTT-S Digest, 673-676
[17]Jan Komisarczuk and Leszerk Rychert(), “High Power Variable Attenuator with PIN Diodes,” 843-847
[18]Victor.M. Lubeche and Jung-Chih Chiao (1999), “MEMS Technologies for Enabling High Frequency Communications Circuits,” TELSIKS’99, October, 13-15
[19]Clark T.-C. Nguyen, Linda P.B. Katechi and Gabriel M. Rebeiz(1998), “Micromachined Devices for Wireless Communications,” Proceedings of The IEEE, . 86(8), 1756-1768
[20]J Jason Yao(2000), “RF MEMS from a device perspective,” J.Micromech. Microeng., 10(2000), R9-R38
[21]Hansjoerg Beutel, Thomas Stieglitz, and Joerg Uwe Meyer(1998), “Microflex: A New Technique for Hybrid Integration for Microsystems”, Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998. (MEMS ‘98), 306-311
[22]L.-S. Fan and S. Woodman, “Batch Fabrication of Mechanical Platforms for High Density Data Storage”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 25-29, 1995, 434-437
[23]Li-Anne Liew, Ruiling Luo, Yiping Liu, Wenge Zhang, Linan An, Victor M. Bright, Martin L. Dunn, John W. Daily, and Rishi Raj, “Fabrication of Multi-Layered SiCN Ceramic MEMS Using Photo-Polymerization of Precursor”, Proceedings of the 2001 IEEE International Conference on Microelectromechanical Systems (MEMS 2001), Interlaken, Switzerland, January 21-25, 2001, 86-89
[24]Christopher W. Storment, David A. Borkholder, Victor Westerlind, John W. Suh, Nadim I. Maluf, and Gregory T. A. Kovacs(1994), “Flexible, Dry-Released Process for Aluminum Electrostatic Actuators”, Journal of Microelectromechanical Systems, 3(9), 90-96
[25]Xi-Qing Sun, T. Masuzawa, and M. Fujino, “Micro Ultrasonic Machining and Self-Aligned Multilayer Machining/Assembly Technologies for 3D Micromachines”, Micro Electro Mechanical Systems, 1996 (MEMS ''96), Proceedings
[26]G. Lammel and P. Renaud(2000), “3D Flip-Up Structure of Porous Silicon with Actuator and Optical Filter for Microspectrometer Applications”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000 (MEMS 2000)
[27]Jun-Bo Yoon, Chul-Hi Han, Euisik Yoon, and Choong-ki Kim, “Monolithic Integration of 3-D Electroplated Microstructures with Unlimited Number of Levels Using Planarization with a Sacrificial Metallic Mold(PSMM)”, Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999 (MEMS 1999)
[28]Rolfe C. Anderson, Richard S. Muller, and Charles W. Tobias(1994), “Porous polycrystalline silicon: a new material for MEMS”, Journal of Microelectromechanical Systems, 3(3), 10-18
[29]Chienliu Chang, “ Electrostatic Microactuator ”, Ph.D. Dissertation, 1998, Institute of Applied Mechanics, National Taiwan University
[30]Kazuo Sato and Mitsuhiro Shikida, “Electrostatic Film Actuator with a Larger Vertical Displacement”, Proceedings of IEEE Micro Electro Mechanical Systems, 1992, 1-5
[31]Motoharu Yamaguchi etc. “Distributed Electrostatic Micro Actuator”, Proceedings of IEEE Micro Electro Mechanical Systems, 1993, 18-23
[32]Rob Legtenberg et al., “Electrostatic Curved Electrode Actuators”, Proceedings of IEEE Micro Electro Mechanical Systems, 1995, 37-42
[33]N. Takeshima, K.J. Gabriel, M. Ozaki, J. Takahashi, H. Horiguchi, and H. Fujita, “Electrostatic Parallelogram Actuators ”, The International Conference on Solid-State Sensors and Actuators, San Francisco, CA, USA, 1991, 63-66
[34]Shifang Zhout, Ki-Qing Sun and William N. Carr “A Monolithic Variable Inductor Network Using Microrelays with Combined Thermal and Electrostatic Actuation”, Micromech. Microeng. 9(1999)45-50 Printed in the UK.
[35]Microwave Engineering(2nd), David M. Pozar
[36]Communication Systems(4th), Haykin
[37]電鍍前處理, 胡書華撰
[38]鍍液操作條件, 胡書華撰
[39]Petersen, “Use silicon as Mechanical Material”,
[40]J Jason Yao(2000), “RF MEMS from a Device Perspective, “ J. Miromech. Microeng. 10(2000) R9-R38
[41]J. R. Potukuchi, R. C. Mott, A. I. Zaghloul, R. K. Gupta, F. T. Assal and R. M. Sorbello(1990), “MMICs Insertion In A Ku-Band Active Phased Array For Communications Satellites,” IEEE MTI-S Digest, 881-884
[42]G. B. Norris, D. C. Bolre, G. St. Onge, C. Wutke, C. Barratt, W. Coughlin and J. Chickanosky(1990), “A Fully Monolithic 4-18 GHz Digital Vector Modulator,” IEEE MTT-S Digest, 789-792
[43]H. Blnack, S. L. Dlage, S. Cassette, E. Chartier and D. Floriot(1994), “Fully Monolithic Ku and Ka-Band GaInP/GaAs HBT Wideband VCOs,” IEEE MTT-S Digest, 127-130
[44]Tsutomu Takenaka, Atsushi Miyazaki, Hiroyuki Matsuura and Hidedto Iwaoka(1995), “MMIC’s for an Integrated RF Spectrum Analyzer Front End,” IEEE Transactions on Instrumentation And Measurement, 44(3), 716-719
[45]Masaaki Kasashima, Satoshi Tachi and Koutarou Tanaka(1997), “High Dynamic Range Variable Gain Amplifier for CDMA Applications,” IEEE MTT-S Digest, 5-8
[46]Phillip W. Wallace, John Bayruns, Norman Scheinberg, Michael Rachlin and Hennry Krautter(1988), “A Temperature Compensated L-Band Variable Gain Amplifier With Eight Bit Digital Control,” IEEE GaAs IC Symposium, 281-284
[47]Brian Arbuckle, Elizabeth Logan, David Pedder(2000), “Processing Technology for Integrated Passive Devies,” Solid State Technology, November
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top