跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠華
研究生(外文):Guan-Hua Huang
論文名稱:對於線性感應馬達驅動器之高性能效益的加強式模糊滑動模式控制設計
論文名稱(外文):Performance-effective Enhanced Fuzzy Sliding Mode Control for Linear Induction Motor Drives
指導教授:蔣欣翰徐國政徐國政引用關係
指導教授(外文):Hsin-Han ChiangKou-Cheng Hsu
口試委員:徐國政李宜勳蔣欣翰
口試委員(外文):Kou-Cheng HsuI-Hsum LiHsin-Han Chiang
口試日期:2013-06-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:76
中文關鍵詞:步階控制滑動模式控制模糊邏輯位置追隨線型感應馬達
外文關鍵詞:backstepping controlsliding mode controlfuzzy logicposition trackinglinear induction motors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,提出一個具有磁通量估測器之加強式模糊滑動控制器系統以用於實現線性感應馬達之位置追蹤控制。首先,介紹線性感應馬達的動態模型,並將端點效應及摩擦力考慮進以估測器為基礎之補償設計中,以用於克服時變之不確定因素。接著,介紹一個基於步階控制技術的滑動模式控制法,並將此控制器與兩個模糊邏輯控制器結合,用於改善線性感應馬達之效能。第一個呈現之模糊邏輯控制器為根據受控系統之狀態,使用模糊邏輯單元對滑動模式控制器中之滑動平面斜率進行動態調整。此外為了緩和對於總集不確定因素上界之需求,便提出第二個模糊邏輯控制器,藉由使用模糊推理機制估測出總集不確定因素之上界值。根據所提出之加強式模糊滑動控制器,線性感應馬達之動子即使在系統參數未知及具有不確定因素情況下,仍可於追蹤週期性參考軌跡時擁有良好之效能表現及強健性。並且,利用數種場景進行電腦模擬與實作,用以證明所提出控制器之有效性。
In this thesis, an enhanced fuzzy sliding mode control system (EFSMC) with a flux observer is proposed for a linear induction motor (LIM) to achieve the position tracking. First, the dynamic model of LIM is introduced, and the end effect and the friction force are also considered in the observer-based compensation design to cope with the time-varying uncertainties. Then, a sliding mode control (SMC) based on the backstepping control technique is presented. This controller is combined with two fuzzy logic controllers to improve the tracking performance of the LIM. The first fuzzy logic controller is proposed, through a dynamic tune of the sliding surface slope constant of the SMC according to the controlled system states by a fuzzy logic unit. To relax the need of the upper bound of the lumped uncertainties in the SMC, the second fuzzy logic controller is presented, in which the upper bound of the lumped uncertainties can be estimated by a fuzzy inference mechanism. With the proposed EFSMC, the mover of the LIM achieves the good performance and robustness in the tracking of periodic reference trajectories, even with unknown system parameters and/or uncertainties. Also, the computer simulations and experiments for several scenarios are conducted to demonstrate the effectiveness of the proposed controller design.
Abstract (In Chinese) i
Abstract ii
Acknowledge iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Schemes of Other Researchers 1
1.3 Main Task and Organization 4
Chapter 2 System Description 6
2.1 Introduction to Liner Induction Motors 6
2.2 Indirect Field-Oriented Control of the LIM Drive 8
2.2.1 Dynamic Model of the LIM Drive Considering End Effect 8
Chapter 3 Observer Design for Compensating the End Effect Phenomenon 13
3.1 Flux Observer Design 13
3.2 The Compensation Scheme for End Effect Phenomenon 16
Chapter 4 Enhanced Fuzzy Sliding Mode Control System 19
4.1 Sliding Mode Control 19
4.1.1 Sliding Mode Controller Design 19
4.2 Fuzzy Sliding Mode Control 23
4.2.1 Fuzzy Logic Control 24
4.2.2 Enhanced Fuzzy Sliding Mode Controller Design 26
4.2.2.1 The Fuzzy Inference Mechanism for Sliding Surface Slope 27
4.2.2.2 The Fuzzy Inference Mechanism for uncertainty boundary 29
Chapter 5 Simulation and Experimental Results 33
5.1 Introduction to Experiment Equipments 34
5.2 The Operation Principle for the LIM System 35
5.3 The Implementation of Control Algorithm in Simulink 36
5.4 Simulation Results 39
5.4.1 Sinusoidal Reference Signal Tracking 40
5.4.2 Triangular Reference Signal Tracking 45
5.4.3 Trapezoidal Reference Signal Tracking 50
5.5 Experimental Results 55
5.5.1 Sinusoidal Reference Signal Tracking 55
5.5.2 Triangular Reference Signal Tracking 60
5.5.3 Trapezoidal Reference Signal Tracking 65
Chapter 6 Conclusions and Future Works 70
6.1 Conclusions 70
6.2 Future Works 71
References 72
[1]A. A. Hassan, Y. S. Mohamed and T. H. Mohamed, “Robust control of a field oriented linear induction motor drive,” in Proc. 11th International Middle East Power Systems Conference (MEPCON), vol. 1, pp. 41-47, Dec. 2006.
[2]Byung-Jun Lee, Dae-Hyun Koo and Yun-Hyun Cho, “Investigation of linear induction motor according to secondary conductor structure,” IEEE Transactions on Magnetics, vol. 45, no. 6, pp. 2839-2842, June 2009.
[3]Faa-Jeng Lin, Chih-Kai Chang and Po-Kai Huang, “FPGA-based adaptive backstepping sliding-mode control for linear induction motor drive,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1222-1231, July 2007.
[4]F.-J. Lin, L.-T. Teng, C.-Y. Chen and Y.-C. Hung, “FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive,” Electric Power Applications, IET, vol. 2, no. 6, pp. 325-340, Nov. 2008.
[5]S. Motlagh and S. S. Fazel, “Indirect vector control of linear induction motor considering end effect,” in Proc. Power Electronics and Drive Systems Technology Conference (PEDSTC), pp. 193-198, Feb. 2012.
[6]M. Tursini, R. Petrella and F. Parasiliti, “Adaptive sliding-mode observer for speed-sensorless control of induction motors,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1380-1387, Sep./Oct. 2000.
[7]E. Leksono, A. Wijayanto and K. Ohnishi, “Motion controller algorithm based on sliding mode controller/observer scheme,” in Proc. 26th Annual Conference of the IEEE Industrial Electronics Society (IECON), vol. 3, pp. 1532-1537, Oct. 2000.
[8]K. K. Shyu and H. J. Shieh, “A new switching surface sliding-mode speed control for induction motor drive systems,” IEEE Transactions on Electric Power Applications, vol. 11, no. 4, pp. 660-667, July 1996.
[9]W. J. Wang and J. Y. Chen, “A new sliding mode position controller with adaptive load torque estimator for an induction motor,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 413-418, Sep. 1999.
[10]N. Sadati and A. Talasaz, “Chattering-free adaptive fuzzy sliding mode control,” in Proc. 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 29-34, Dec. 2004.
[11]C.C. Kung and K. H. Su, “Adaptive fuzzy position control for electrical servodrive via total-sliding-mode technique,” IEE Proceedings - Electric Power Applications, vol. 152, no. 6, pp. 1489-1502, Nov. 2005.
[12]N. Yagiz, Y. Hacioglu and Y. Taskin, “Fuzzy sliding-mode control of active suspensions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3883-3890, Nov. 2008.
[13]D. Antić, M. Milojković, S. Nikolić and S. Perić, “Optimal fuzzy sliding mode control with a time-varying sliding surface,” in Proc. 2010 International Joint Conference on Computational Cybernetics and Technical Informatics (ICCC-CONTI), pp. 149-153, May 2010.
[14]F.-J. Lin, D.-H. Wang and P.-K. Huang, “FPGA-based fuzzy sliding-mode control for a linear induction motor drive,” IEE Proceedings - Electric Power Applications, vol. 152, no. 5, pp. 1137-1148, Sep. 2005.
[15]F.-J. Lin and S. L. Chiu, “Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,” IEE Proceedings - Control Theory and Applications, vol. 145, no. 1, pp. 63-72, Jan. 1998.
[16]I. K. Bousserhane, A. Boucheta, A. Hazzab, B. Mazari, M. Rahli and M. K. Fellah, “Fuzzy-sliding controller design for single sided linear induction motor position control,” in Proc. The International Conference on EUROCON, 2007, pp. 1942-1947, Sep. 2007.
[17]G. Kang and K. Nam, “Field-oriented control scheme for linear induction motor with the end effect,” in Proc. of IEE Electric Power Applications, vol. 152, no. 6, pp. 1565-1572, Nov. 2005.
[18]P. Hamedani and A. Shoulaie, “Indirect field oriented control of linear induction motors considering the end effects supplied from a cascaded H-bridge inverter with multiband hystersis modulation,” in Proc. 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), , pp. 13-19, Feb. 2013.
[19]F.-J. Lin, P.-H. Shen and S.-P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor drive,” IEE Proc.-Electr. Power Appl., vol. 149, no. 3, pp. 184-194, May 2002.
[20]Y. Zhu and P. R. Pagilla, “Static and dynamic friction compensation in trajectory tracking control of robots,” in Proc. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2644-2649, May 2002.
[21]Seok Ho Jeon, Kwang Kyo Oh and Jin-Young Choi, “Flux observer with online tuning of stator and rotor resistances for induction motors,” IEEE Transactions on Industrial Electronics, vol. 49, no. 3, pp. 653-664, June 2002.
[22]Hou-Tsan Lee, Li-Chen Fu and Hsin-Sain Huang, “Sensorless speed tracking control of induction motor with unknown torque based on maximum power transfer,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 911-924, Aug. 2002.
[23]Chung-Chun Kung and Chin-Chang Liao, “Fuzzy-sliding mode controller design for tracking control of nonlinear system,” in Proc. American Control Conference, 1994, vol. 1, no. 4, pp. 180-184, July 1994.
[24]Kuang-Yow Lian, Cheng-Yao Hung, Chian-Song Chiu and Li-Chen Fu, “Robust adaptive control of linear induction motors with unknown end-effect and secondary resistance,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 412-422, June 2008.
[25]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, USA, 1991.
[26]Yan Zhang, Jin Changxi and V. I. Utkin, “Sensorless sliding-mode control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 6, pp. 1286-1297, Dec. 2000.
[27]J. Soltani and G. R. A. Markadeh, “A current-based output feedback sliding mode control for speed sensorless induction machine drive using adaptive sliding mode flux observer,” in Proc. 5th International Conference on Power Electronics and Drive Systems (PEDS), vol. 1, pp. 226-231, Nov. 2003.
[28]F. A. Patakor, M. Sulaiman and Z. Ibrahim, “Adaptive sliding mode for indirect field oriented controlled of induction motor,” in Proc. 2011 IEEE Student Conference on Research and Development (SCOReD), pp. 289-293, Dec. 2011.
[29]Chiang-Cheng Chiang and Chia-Chen Hu, “Output tracking control for uncertain underactuated systems based on fuzzy sliding mode control approach,” in Proc. 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-8, June 2012.
[30]K. S. R. Rao and Muhammad Ariff Yahya, “Neural networks applied for fault diagnosis of AC motorsm,” in Proc. International Symposium on Information Technology, vol. 4, pp. 1-6, Aug. 2008.
[31]H. Berriri, M. W. Naouar and I. Slama-Belkhodja, “Easy and fast sensor fault detection and isolation algorithm for electrical drives,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 490-499, Feb. 2012.
[32]Xin Wen, D.J. Brown and Qizheng Liao, “Online motor fault diagnosis using hybrid intelligence techniques,” in Proc. 2010 IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 355-360, Oct. 2010.
[33]V.P., Mini, S. Setty and S. Ushakumari, “Fault detection and diagnosis of an induction motor using fuzzy logic,” in Proc. 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), pp. 459-464, July 2010.
[34]Jianqiang Liu, Fei Lin, Zhongping Yang and T. Q. Zheng, “Field oriented control of linear induction motor considering attraction force & end-effects,” in Proc. CES/IEEE 5th International Power Electronics and Motion Control Conference, vol. 1, pp. 1-5, Aug. 2006.
[35]B. Bessaih, A. Boucheta, I. K. Bousserhane, A. Hazzab and P. Sicard, “Speed control of linear induction motor considering end-effects compensation using rotor time constant estimation,” in Proc. 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1-7, Mar. 2012.
[36]A. Zare Bazghaleh, M. Naghashan, H. Mahmoudimanesh and M. Meshkatoddini, “Effective design parameters on the end effect in single-sided linear induction motors,” World Academy of Science, Engineering and Technology (WASET), vol. 64, pp. 95-100, 2010.
[37]Chin-I Huang and Li-Chen Fu, “Adaptive approach to motion controller of linear induction motor with friction compensation,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 480-490, Aug. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊