跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:查顯飛
研究生(外文):Shian-fei Jha
論文名稱:以單一靶材射頻濺鍍銅銦鎵硒(CIGS)薄膜及不同硒化對薄膜的特性改善
論文名稱(外文):The study of characteristics of CuInGaSe (CIGS) thin films by RF-sputtering on single target and the different selenizations on thin films
指導教授:許世昌許世昌引用關係
指導教授(外文):Shin-Chang Shei
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:銅銦鎵硒單一靶材射頻濺鍍硒化
外文關鍵詞:single targetRF-sputteringselenizationsCIGS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:833
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
CIGS薄膜太陽能電池,是目前被公認為最有前途的吸收材料之一。為了提高太陽能電池吸收層的特性,後續的硒化熱處理製程是不可少的。
本論文主要使用簡化控制過程的銅銦鎵硒(CIGS)單一四元合金靶材。藉由射頻濺鍍以功率100w並基板溫度400℃的參數沉積在基板上來獲得CIGS吸收前驅層。在不同硒化熱處理參數的控制下,製作出p型且低電阻率的CIGS薄膜吸收層。此外,觀察到在硒化溫度550℃的CIGS晶粒尺寸較大,並硒化持溫時間30分鐘的結構較為完整。而拉曼光譜則觀察到了CIGS四元相訊號峰的形成,且能隙可以容易地達到1eV以上。
因此,本研究針對CIGS薄膜吸收層改善的原因作探討,並得到以硒蒸氣硒化的製程為最佳的改善。
CIGS thin film solar cells, has been recognized as one of the most promising absorber materials. For improving the absorber layer characteristics of solar cells, it is essential to followed selenization heat treatment process.
The dissertation mainly uses Copper Indium Gallium Selenium (CIGS) single quaternary alloy target, which can simplify the process control. The power was kept at 100w and substrate temperature was 400 ℃ to deposit on the substrate, absorption precursor layer CIGS by RF-sputtering was obtained. By controlling different selenization heat treatment parameters, p-type and low resistivity CIGS thin film absorption layer can be fabricated. Furthermore, it was observe that the thin film with larger grain size as selenization temperature was 550℃, and the selenization holding temperature time was 30 minutes, crystal structure with better quality. From the Raman spectra signal peak gave an evidence of the formation of the CIGS quaternary compounds, and the energy band gap can be easily reached the above of 1eV.
Therefore, this studies investigated for the enhanced reasons of CIGS thin film absorber layer, and it was expect to provide a better heat selenization method for effective enhancement.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池介紹 2
1.2.1 太陽能電池發展歷史 2
1.2.2 太陽光頻譜 3
1.2.3 太陽能電池的基本工作原理 4
1.2.4 太陽能電池的轉換效率 7
1.2.5 各式太陽能電池的種類介紹 9
第二章 銅銦鎵硒(CIGS)薄膜性質 17
2.1 銅銦鎵硒(CIGS)薄膜吸收層之介紹 17
2.2 銅銦鎵硒(CIGS)薄膜吸收層之結構 17
2.3 銅銦鎵硒(CIGS)薄膜吸收層之特性 20
2.4 銅銦鎵硒(CIGS)薄膜吸收層之製程方法 22
2.4.1 共蒸鍍法(Co-evaporation ) 22
2.4.2 真空濺鍍法(Sputtering) 24
2.4.3 電沉積法(Electrodeposition) 26
2.4.4 化學噴灑熱解法(Chemical spray pyrolysis) 27
2.4.5 塗佈製程(Coating process) 28
2.5 銅銦鎵硒(CIGS)薄膜吸收層之硒化影響 29
第三章 文獻回顧與研究目標 31
3.1 文獻回顧 31
3.2 研究目標 38
第四章 製程設備、分析儀器與實驗步驟 39
4.1 製程設備 39
4.1.1 射頻濺鍍系統 39
4.1.2 真空熱退火處理系統 40
4.1.3 硒蒸氣硒化系統 40
4.1.4 化學水浴法沉積硒化系統 40
4.2 分析儀器 42
4.2.1 高解析熱電子型場發射掃描式電子顯微鏡 42
4.2.2 能量分散光譜儀(Energy Dispersive X-ray Spectrometer; EDS) 44
4.2.3 霍爾效應量測(Hall effect measurement) 45
4.2.4 拉曼光譜儀(Raman spectra) 48
4.2.5 X光繞射分析儀(X-ray Diffractometer, XRD) 48
4.2.6 紫外光/可見光/近紅外光分光光譜儀(UV/Vis/NIR) 49
4.3 實驗步驟 50
4.3.1 基板處理之步驟 50
4.3.2 薄膜製備之步驟 50
4.3.3 真空熱退火處理之步驟 51
4.3.4 硒蒸氣硒化之步驟 51
4.3.5 化學水浴法沉積硒化之步驟 52
第五章 實驗結果與分析討論 54
5.1 濺鍍銅銦鎵硒(CIGS)薄膜 54
5.2 真空熱處理對銅銦鎵硒(CIGS)薄膜的影響 63
5.3 硒蒸氣硒化對銅銦鎵硒(CIGS)薄膜的影響 69
5.4 化學水浴法沉積硒化對銅銦鎵硒(CIGS)薄膜的影響 84
5.5 比較不同硒化熱處理製程對銅銦鎵硒(CIGS)薄膜的影響 92
第六章 結論與未來工作 99
參考文獻 101
[1]BP. “BP世界能源統計2011”. http://www.bp.com/, 2011.
[2]張品全(2002)。太陽電池。科學發展,349。
[3]A.E.Becquerel, “Photovoltaic Effect”, http://www.mrsolar.com/, 2010.
[4]R.S. Ohl, “Light sensitive device”, U.S. Patent 2, 402, 662.
[5]Chapin D, Fuller C, Pearson G, J. Appl. Phys. 1954, 25, 676.
[6]Alferov, Z. I., “Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology”. Rev. Mod. Phys. 2001, 73, 767–782.
[7]Carlson, D.E. and Wronski, C.R., “Amorphous Silicon Solar Cells”, Appl. Phys. Lett., 1976, 28, 671-673.
[8]M. P. Thekaekara, “Data on Incident Solar Energy”, Suppl. Proc. Zoth Annu. Meet. Inst. Environ. Sci., 1974, p. 21.
[9]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳(2009)。太陽電池,台北市:五南圖書出版公司。
[10]黃調元(譯)(2007)。Simon M. Sze著。半導體元件物理與製作技術(Semiconductor Devices Physics and Technology)(頁480-488)。新竹市:交大出版社。
[11]NREL, "2008 Solar Technologies Market Report", http://www.nrel.gov/, Jan 2010.
[12]Zhao J, Wang A, Green MA, Ferrazza F, Appl. Phys. Lett., 1998, 73, 1991.
[13]John Tracy, and Joseph Wise, “Space Solar Cell Performance For Advanced GaAs and Si Solar Cells”, IEEE, 1988.
[14]J. C. Chen, M. Ladle Ristow, J. I. Cubbage and J. G. Werthen, “GaAs/Ge heterojunction grown by metal-organic chemical vapor deposition and its application to high efficiency photovoltaic devices”, Journal of electronic materials. 1992, Vol. 21, No. 3, 347-353.
[15]Takamoto T, Sasaki K, Agui T, Juso H, Yoshida A, Nakaido K. "III-V compound solar cells”, SHARP Technical Journal 100, Feb 2010.
[16]Yang J, Banerjee A, Sugiyama S, Guha S, 26th IEEE Photovoltaic Specialists Conference, Anaheim 1997, 563.
[17]Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P, 17th European Photovoltaic Solar Energy Conference 2001, 995–1000.
[18]Contreras MA, Ramanathan K, AbuShama J, Hasoon F, Young D, Egass B, Noufi R, solar cells. Progress in Photovoltaics 2005, 13, 209.
[19]H. J. Moller, Semiconductor For Solar Cell, 1993.
[20]M. Gratzel, ”Photochemical Cells”, Nature 414. 2001, 338
[21]Chiba Y, Islam A, Kakutani K, Komiya R, Koide N, Han L, 15th International Photovoltaic Science and Engineering Conference, Shanghai 2005, 665.
[22]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, ”Hybrid nanorod- polymer solar cells”, Science 295. 2002, 2425.
[23]P. Peumans, S.R. Forrest, “Very-high-efficiency double-hetero structure copper phthalocyanine/C60 photovoltaic cells”, Appl, Phys. Lett., 2001, 79,126-128.
[24]Jenny Nelson, “the Physics of Solar Cells”, Imperial College Press. 2003.
[25]M. Krejci, PhD thesis, ETH Zurich, 1999.
[26]M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner, and Ch.-H.Fischer, T.P.Niesen, F.Karg, J. Appl. Phys., 2004, 7, 3858.
[27]D. S. Albin, J. J. Carapella, J. R. Tuttle, and R. Noufi, Mater. Res. Soc. Symp. Proc. 1991, 228, 267.
[28]S.H. Wei and A. Zunger, J. Appl. Phys. 1995, 78, 3846.
[29]M. L. Fearheiley, “The phase-relations in the Cu, In, Se system and the growth of CuInSe2 single-crystals”, Sol. Cells, 1986, 16, pp. 91-100.
[30]H. W. Schock, in Proceedings of the 12th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, p. 944.
[31]M. A. Contreras, H. Wiesner, D. Niles, K. Ramanathan, R. Matson, J. Tuttle, J. Keane, and R. Noufi, in Proceedings of the 11th International Conference on Ternary and Multinary Compounds, p.809.
[32]M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, and R. Noufi, in Proceedings of the 24th IEEE Photovoltaic Specialists Conference, p. 69.
[33]U.Rau, H.W.Schock, “Electronic properties of Cu(In,Ga)Se2 hete cells–recent achievements, current understanding, and future challenges”, Appl. Phys., 1999, A 69, pp.139-146.
[34]L.L.kazmerski, ”Photovoltaics:A review of cell and module technologies, Renewable and sustainable energy review”, 1997, 1,pp.71-171.
[35]林明獻(2008)。太陽電池技術入門。新北市:全華。
[36]謝東坡、黃瑜。銅銦鎵硒(CIGS)太陽能電池-共蒸鍍製程技術發展簡介。工業材料雜誌264 期。2008年12月。
[37]V. Alberts, R. Swanepoel and M. J. Witcomb, “Material properties of CuInSe2 prepared by H2Se treatment of CuIn alloys”, J. Mater. Sci., 1998, 33, pp. 2919-2925.
[38]Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM., Applied Physics Letters, 1994, 65, 198-200.
[39]林華愷、藍崇文。CIGS 薄膜電池產業技術與挑戰。台灣化學工程學會化工專刊,薄膜太陽能電池專刊。2012年4月。
[40]郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨。銅銦鎵硒(CIGS)太陽能電池濺鍍製程技術發展與現況。工業材料雜誌284 期。2010年8月。
[41]S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood, “Handbook of Plasma Technology”, New Jersey: Noyes Publications, 1982, pp.146-158.
[42]張瑋恩(2009)。硒化銅銦鎵太陽能電池電極層之特性分析。國立東華大學電機工程學系碩士論文。
[43]杜誌祥。濺鍍CIGS薄膜之機械性質研究。中國機械工程學會第二十五屆全國學術研討會論文集。2008年。
[44]徐為哲、蔡松雨、邱松燕。以電鍍技術製作CIGS 吸收層之發展現況。工業材料雜誌284 期。2010年8月。
[45]V. Alberts, R. Swanepoel and M. J. Witcomb, “Material properties of CuInSe2 prepared by H2Se treatment of CuIn alloys”, J. Mater. Sci., 1998, 33, pp. 2919-2925.
[46]H. Schon, V. Alberts and E. Bucher, “Structural and optical characterization of polycrystalline CuInSe2”, Thin Solid Films, 1997, 301, pp. 115-121.
[47]J. Kessler, C. Chityuttakan, J. Lu, J. Scholdstrom and L. Stolt, “Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: Growth model and structural considerations”, Prog. Photovoltaics, 2003, 11, pp. 319-331.
[48]M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman and J. M. Schultz, “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere”, Appl. Phys. Lett., 1995, 67, pp. 3978-3980.
[49]F. D. Dejene and V. Alberts, “Influence of GaSe deposition temperature on the structural properties and in-depth compositional features of two-step grown Cu(In,Ga)Se2 thin films”, J. Mater. Sci-Mater El., 2003, 14, pp. 89-95 (2003).
[50]Wei Li , Yun Sun, Wei Liu, Lin Zhou, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor”, Solar Energy. 2006, 80, 191–195.
[51]Wei Liu, Jian-Guo Tian, Qing He, Feng-Yan Li, Chang-Jian Li, Yun Sun, “Effect of metallic precursors on the thin film thickness and reaction resistances in the selenization process”, Current Applied Physics. 2011, 11, 327-330.
[52]W.K. Kim, E.A. Payzant, S. Yoon, T.J. Anderson, “In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction”, Journal of Crystal Growth. 2006, 294, 231–235.
[53]Tokio Nakada, Hiroki Ohbo, Takayuki Watanabe, Hidenobu Nakazawa, Masahiro Matsui, Akio Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization”, Solar Energy Materials and Solar Cells. 1997, 49, 285-290.
[54]Verma S, Orbey N, Birkmire RW, Russell TWF. Prog. Photovoltaics. 1996, 4, 341–53.
[55]Alberts V, Bekker J, Witcomb MJ, Sch.on JH, Bucher E. Thin Solid Films. 2000, 361-362, 432–6.
[56]Orbey N, Hichri H, Birkmire RW, Russell TWF. Prog Photovoltaics. 1997, 5, 237–47.
[57]Norsworthy G, Leidholm CR, Halani A, Kapur VK, Roe R, Basol BM, Matson R. Solar Energy Mater Solar Cells. 2000, 60, 127–34.
[58]L. Zhang,F.D. Jiang,J.Y. Feng, “Formation of CuInSe2 and Cu(In,Ga)Se2 films by electrodeposition and vacuum annealing treatment”, Solar Energy Materials & Solar Cells. 2003, 80, 483–490.
[59]K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, E.L. Ameziane, “Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1-xGaxSe2 thin films”, Thin Solid Films. 2005, 488, 62 – 67.
[60]Dungeng Peng, Jinsong Zhang, and Qinliang Liu,” Effect of Sodium Selenosulfate on Restoring Activities of Selenium-Dependent Enzymes and Selenium Retention Compared with Sodium Selenite In Vitro and In Vivo”, Biological Trace Element Research, 2007, Vol. 117.
[61]Liping Liu, Qing Peng, and Yadong Li, “Preparation of Monodisperse Se Colloid Spheres and Se Nanowires Using Na2SeSO3 as Precursor”, Nano Res. 2008, 1, 403-411.
[62]楊育貞、王承先、王朝俊、劉厥揚、連水養、蔡丕椿(2011,5月)。以 RF 磁控濺鍍製備不同製程功率之CIG吸收層薄膜特性分析與研究。論文發表於2011光電科技研討會,台南市。
[63]Wei Liu, Jian-Guo Tian, Qing He, Feng-Yan Li, Chang-Jian Li, Yun Sun, “In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system”, Thin Solid Films 2010, 519, 244–250.
[64]莊宗曄(2009)。濺鍍銅銦鎵硒薄膜之硒處理研究。國立高雄大學電機工程學系碩士班碩士論文。
[65]李健,朱洁(2007)。硒化技術對CuInSe2薄膜表面形貌和晶相的影響。物理學報,56(01),574-09。
[66]Quirk, M., J., Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, 2001, chapter 12.
[67]李世鴻(譯)(2006)。Donald A. Neamen著。半導體物理及元件(Semiconductor Physics & Devices)。台北市:美商麥格羅‧希爾國際股份有限公司。
[68]“CIGS太陽能電池 – 技術白皮書”, Solar Buster Corporation.
[69]Rincόn C , Ramίrez F J 1992 J. Appl. Phys. 72 4321.
[70]Theodoropoulou S , Papadimitriou D , Rega N , Siebentritt S , “Lux-Steiner M C 2006”, Thin Solid Films, 511-512, 690.
[71]Wolfram Witte, Robert Kniese, Michael Powalla, “Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents”, Thin Solid Films. 2008, 51, 867–869.
[72]彭洞清、方嘉鋒、陳智偉、邱鼎文、王宣凱、簡思甄、林建宏、邱文鼎、余學杰、陳冠竹、林世仁(2009)。提升銅銦鎵二硒薄膜太陽能電池轉換效率及降低其製造成本的研發。行政院國家科學委員會產學合作計畫報告(NSC97-2622-E-006-027-CC2)。台南市:國立成功大學 微電子工程研究所。
[73]A. E. Raevskaya, A. L. Stroyuk, and S. Ya. Kuchmii, “Features of formation of CdSe nanoparticles in aqueous sodium polyphosphate solutions”, Theoretical and Experimental Chemistry, 2006, Vol. 42, No. 2.
[74]Xinjun Wang, Ke Li, Yutao Dong, and Kai Jiang, “Preparation and characterization of monodispersed PbSe nanocubes”, Cryst. Res. Technol. 2010, 45, No. 1, 94 – 98 / DOI 10.1002/crat.200900501.
[75]娄骁、翁文剑、杜丕一、沈鸽、韩高荣(2004)。水溶液中CdSe納米晶體的合成。稀有金屬材料與工程,339(3),291-293。
[76]馮鐀慧、陳阿煌(2010)。耦合多孔性CdSe/TiO2 光觸媒製備及對偶氮染料分解之研究。論文發表於2010年奈米技術與材料研討會,彰化縣。
[77]Chun-Hong Chiu, “A study of CIS thin films prepared by SEL technique”, 2008.
[78]黃合建(2004)。光敏性硒化鎘奈米微粉之合成與特性研究。國立成功大學化學工程學系碩博士班。
[79]DYMAX, “UV-CAST™ Keypad Coatings Application Bulletin,"http://www.dymax.com/products/electronic/keypad_coatings/index.php, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top