跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉怡青
研究生(外文):I-Ching Liou
論文名稱:文蛤抽出物之抗氧化活性與其季節及產地
論文名稱(外文):Antioxidative activity in extracts of hard clam and the variations in season and cultured area
指導教授:邱思魁邱思魁引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:92
中文關鍵詞:文蛤抗氧化活性季節產地
外文關鍵詞:Antioxidative activityhard clamseasoncultured area
相關次數:
  • 被引用被引用:15
  • 點閱點閱:710
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

本研究探討文蛤酵素水解物及其低分子量區分之抗氧化活性,以及產地、季節上的變動。文蛤原料經煮熟、均質及真空凍結乾燥製成乾物後,作為實驗之用。加入消化酵素(pepsin、trypsin、α-amylase及α-glucosidase)及食品用酵素(Protease A、Protease N、Prozyme 6、Flavourzyme、papain、Alcalase 及Protamex)於37℃或50℃水解12小時,比較肌紅蛋白催化亞麻油酸過氧化抑制能力、α,α-diphenyl-β-picrylhydrazyl(DPPH)自由基清除能力及還原力等抗氧化活性。其次,選擇活性較高的Protamex、Alcalase及Prozyme 6等三種酵素進行水解時間(0~12小時)的影響,抗氧化活性皆大抵以水解12小時者較高。
由上述,三種酵素( Protamex、Alcalase及Prozyme 6 )12小時水解液,以及再經80%乙醇沉澱處理所得到的低分子量區分LMW-І及LMW-ІІ(前者使用水解液,而後者使用含肉及水解液之全部)等製成乾物,進行不同濃度下抗氧化活性的變化,結果得知抗氧化活性以低分子物質為主,且來自LMW-ІІ之IC50值均低於來自LMW-І者,LMW-ІІ之IC50值分別是肌紅蛋白催化亞麻油酸過氧化抑制能力(3.68~3.92 mg/mL)、DPPH自由基清除能力(1.17~2.19 mg/mL)及還原力(4.08~16.23 mg/mL)。以HPLC法測定DPPH自由基清除能力,所得其IC50值(1.17~8.58 mg/mL)較之分光法降低6.0 ~ 58.5%。各種乾物在相當於IC50值之濃度下以α-amylase或α-glucosidase處理,會影響其抗氧化活性。針對不同季節與產地採樣文蛤之乾物,調製其80%乙醇萃取液,測定抗氧化活性,結果顯示以春、秋兩季的樣品其抗氧化活性較高,且產地不同之間的變動亦大。
Abstract

This study investigates the antioxidative activity in extracts of hard clam in relation to enzymatic treatment, fractionation, season, and cultured area. The hard clam specimens were cooked, homogenized, and freeze-dried in vacuum to become lyophilized meat powder as sample for the experiments. To meat sample, different enzymes including digestive enzymes ( pepsin, trypsin, α-amylase and α-glucosidase) and proteases form commercial sources (Protease A, Protease N, Prozyme 6, papain, Flavourzyme, Alcalase and Protamex) were added and kept at 37℃ or 50℃ for 12 hours. The hydrolysates were then measured for inhibition on hemoglobin-induced linoleic acid peroxidation, scavenging α,α-diphenyl-β-picrylhydrazyl (DPPH) radical, and reducing power. Among the enzymes used, the Protamex, Alcalase and Prozyme 6 extracts were relatively high in antioxidative activities. The hydrolysis by the 3 enzymes for 0-12 hours was examined further. Results showed that their antioxidative activities became higher with the increase of hydrolysis time.
Accordingly, the 12-hour hydrolysates of Protamex, Alcalase, and Prozyme 6 along with their low-molecule-weight fractions (LMW-І and LMW-ІІ) were lyophilized and measured for their dose-dependent changes in antioxidative activity. LMW-І was prepared from the hydrolysate by adding ethanol to a final concentration of 80% ethanol to precipitate large molecules. LMW-ІІ was prepared by the same manner except that after hydrolysis, the whole reaction mixture was used. It was found that the antioxidative activity in hard clam mainly derived from the contribution of low-molecule-weight substances. In comparison with LMW-І, the IC50 values from LMW-ІІ were small, ranging between 3.68-3.92 mg/mL for inhibition on hemoglobin-induced linoleic acid peroxidation, 1.17~2.19 mg/mL for scavenging DPPH radical, and 4.08~16.23 mg/mL for reducing power, respectively. Also, the IC50 values of scavenging DPPH radical as determined by HPLC method showed a decrease of 6.0-58.5% as compared with that of photometric method. On the other hand, antioxidative activity of the lyophilized samples at the concentrations of IC50 changed considerably after being digested by α-amylase and α-glucosidase.
The hard clam specimens from different season and cultured areas were also collected to obtain a lyophilized meat sample. Their 80% ethanolic extract was then to prepared measure antioxidative activity. On the whole, samples from spring and autumn seasons tended to be high in antioxidative activities. In addition, considerable variations in inhibition on hemoglobin-induced linoleic acid peroxidation, scavenging DPPH radical, and reducing power were also observed between samples collected from different cultured areas.
目 錄
頁次
中文摘要……………………………………………………………...… I
英文摘要……………………………………………………………...… III
目錄…………………………………………………………………...… 1
壹、前言…………………..…………………..…….….….…………… 4
貳、文獻整理…………………….…….……..………………………… 6
一、保健食品及其進展...……..…………..………………..………… 6
二、文蛤之養殖概況……….……………..……………..…………... 7
三、文蛤之一般成份與季節性變化………………….……………… 7
四、魚貝類萃取成分與抗氧化性…………………………………… 8
五、蛋白質及醣類之酵素水解…………………………………….… 9
(一)醣類分解酵素……………………………………………… 9
(二)蛋白酶之分類………………………………………………. 10
(三)影響蛋白質水解之因子……………………………………… 11
(四)蛋白質水解物之抗氧化特性……………………………….. 13
六、自由基與抗氧化劑……………………………………………….. 15
(一)自由基定義與來源…………………………………………… 15
(二)抗氧化劑之作用原理………………………………………... 16
(三)常見的自由基傷害…………………………………………… 17
參、實驗材料與方法……………………………………………….. 19
一、實驗材料………………………………………………………….. 19
二、實驗方法………………………………………………………….. 20
(一)酵素水解對文蛤抽出物抗氧化活性之影響……………….… 21
1.酵素種類之影響……………………………………………… 21
2.水解時間之影響……………………………………………… 22
3.水解液及低分子量區分乾物不同濃度之抗氧化活性……… 23
4.醣酶對水解物及其低分子區分之影響……………………… 24
(二)季節與產地不同文蛤之抗氧化活性……..…………….….. 24
三、分析方法…………………….…………………………………... 25
(一)抗氧化活性測定……………………………………….……. 25
1.抑制肌紅蛋白催化亞麻油酸過氧化之能力……………….… 25
2.α,α-diphenyl-β-picrylhydrazyl(DPPH)自由基清除能力…… 26
3.還原力測定…………………………………………………….. 26
(二)可溶性蛋白質含量測定……………………........…………… 26
(三)胺基含量測定……………………………………………..... 27
1. o-Phthalaldehyde呈色法…………………………………...... 27
2. Ninhydrin呈色法………..……………….………................... 27
四、統計分析…………………………………………………………. 28
肆、結果與討論…………………………………………………..…….. 29
一、酵素水解對文蛤抽出物抗氧化活性之影響……………….… 29
(一)酵素種類之影響…………………………………………… 29
(二)水解時間之影響…………………………………………… 34
(三)水解液及低分子量區分乾物不同濃度之抗氧化活性…… 38
二、季節與產地不同文蛤之抗氧化活性……..…………….….. 45
伍、結論………………………………………………………………… 48
陸、參考文獻…………………………………………………….….….. 50
柒、表…………………………………………………………………... 60
捌、圖…………………………………………………………………… 66
附表一…………………………………………………………………… 92
陸、參考文獻

Adler-Nissen, J. 1979. Enzymatic hydrolysis of food proteins. Elsevier applied science publishers, New York, p.210.
Amarowicz, R. and Shahidi, F. 1997. Antioxidant activity of peptide fractions of capelin protein hydrolyzates. Food Chem. 58: 355-359.
Arakaki, J. and Suyama, M. 1966. Free and conjugated amino acid in the extractives of anchovy. Bull. Jap. Soc. Sci. Fish. 32: 74-79.
Aruoma, O., Laughton, M. and Halliwell, B. 1989. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264: 863-869.
Astawan, M., Wahyuni, M., Yasuhara, T., Yamada, K., Tadokoro, T. and Maekawa, A. 1995. Effects of angiotensin I-converting enzyme inhibitory substances derived from Indonesian dried-salted fish on blood pressure of rats. Biosci. Biotech. Biochem. 59: 425-429.
Bishov, S. J. and Henick, A. S. 1972. Antioxidant effect of protein hydrolyzates in a freeze-dried model system. J. Food Sci. 37: 873-875.
Bishov, S. J. and Henick, A. S. 1975. Antioxidant effect of protein hydrolysates in freeze-dried model system. J. Food Sci. 40: 345-348.
Boldyrev, A., Dupin, A., Batrukova, M., Bavykina, N., Korshunova, G. and Shvachkin, Y. 1989. A comparative study of synthetic carnosine analogs as antioxidants. Comp. Biochem. Physiol. 94B(2): 237-240.
Boldyrev, A., Dupin, A., Pindel, E. and Severin, S. 1988. Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89B(2): 245-250.
Brand-Williams, W., Cuveliver, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28:25-30.
Brown, C. E. 1981. Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88: 245-256.
Cadenas, E. 1995. Mechanisms of oxygen activation and reactive oxygen species detoxification. pp.1-61. Eds. Chapman and Hall. Oxidative Stress and Antioxidant Defenses in Biology. New York. USA.
Cavalieri, E. L. and Rogan, E. G. 1995. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica. 25: 677-688.
Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. 1994. EPR spin-trapping studies of the hydroxyl radical scavenging ability of carnosine and related dipeptides. J. Agric. Food Chem. 42:1407-1410.
Chen, H. M., Muramoto, K. and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43(3): 574-578.
Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44(9): 2619-2622.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46(1): 49-53.
Chen, H. M., Muramoto, K., Yamauchi, F., Ochi, H. and Nokihara, N. 1997. Characterization of antioxidative peptides from soybean. In Food Factors for Cancer Prevention, pp.639-641. Eds. Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., Yoshikawa, T., Springer-Verlag, Tokyo.
Cheng, K. C., Cahill, D. S., Kasai, H., Nishimura, S. and Loeb, L. A. 1992. 8-Hydroxyguanine, an abundant from of oxidative DNA Damage, causes GT and AC substitution. J. Biol. Chem. 267: 166-172.
Church, F. C., Swaisgood, H. E., porter, D. H. and Catignani, G. I. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66:1219-1227.
Crush, K.G. 1970. Carnosine and related substances in animal tissues. Comp. Biochem. Physiol. 34: 3-30.
Dahl, T. A., Midden, R. W. and Hartman, P. E. 1988. Some prevalent biomolecules as defenses against singlet oxygen damage. Photochem. Photobiol. 47: 357-362.
Dziezak, J. D. 1986. Preservatives:antioxidant. Food Technol. 40: 94-102.
Fagbenro, O. and Jauncery, K. 1993. Chemical and nutritional quality of raw, cooked and salted fish silage. Food Chem. 48: 331-335.
Frankel, E. N. 1991. Recent advances in lipid oxidation. J. Sci. Food. Agric. 54: 495-511.
Gildberg, A. and Raa, J. 1977. Properties of propionic acid/formic acid preserved silage of cod viscera. J. Sci. Food Agric. 28: 647-653.
Gildberg, A., Hermes. J. E. and Orejana, F. M. 1984. Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J. Sci. Food Agric. 35: 1363-1369.
Gill, I., Lopez-Fandino, R., Jorba, X. and Vulfson, E. N. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microbial Technol. 18: 162-183.
Halliwell, B. 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 344(8924): 721-4.
Halliwell, B., Murcia, M. A., Chirico, S.and Aruoma, O. I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 35: 7-20.
Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300.
Hartley, B. S. 1960. Proteolytic enzymes. Ann. Rev. Biochem. 29: 45.
Hazlewood, C. and Davies, M. J. 1995. Damage to DNA and RNA by tumour promoter and derived alkoxyl radicals: an EPR spin trapping study. Biochem. Soc. Trans. 23: 259S.
Hultin, H. O. 1985. Characteristic of muscle tissue In ² Food Chemistry ², Fennema, O. R. Ed., pp.750. Marcel Dekker Inc., New York.
Jeffery, P. L., Town, D. H. and Brown, B. I. 1970a. Studies of lysosomal alpha-glucosidase I: Purification and properties of the rat liver enzyme. Biochem. 9: 1403-1415.
Jeffery, P. L., Town, D. H. and Brown, B. I. 1970b. Studies of lysosomal alpha-glucosidase II: Kinetics of action of rat liver enzyme. Biochem. 9: 1416-1423.
Jeon, Y. J., Byun, H. G. and Kim, S. K. 1999. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Pro. Biochem. 35: 471-478.
Kansci, G., Genot, C., Meynier, A. and Gandemer, G.1997. The antioxidant activity of carnosine and its consequences on the volatile profiles of liposomes during iron/ascorbate induced phospholipids oxidation. Food Chem. 60(2):165-175.
Karel, M. Tannenbuam, S.R. Wallace, D.H. and Maloney, H. 1966. Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. J. Food Sci., 31:892-896.
Kehrer, J. P. 1993. Free radicals as mediators of tissue injury and disease. crit. rev. toxicol. 23(1): 21-48.
Koster, J. F. and Slee, R.G. 1977. Some properties of human liver acid alpha-glucosidase. Biochem. Biophys, Acta. 482: 89-97.
Kuo, J. M., D. B. Yen, and B. S. Pan. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47: 3206-3209.
Lahl, W. J. and Braun, S. D. 1994. Emzymatic production of protein hydrolysates for food use. Food Technol. 48(10): 68-71.
Lee, Y. S., Noguchi, T. and Naito, H. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr. 49: 67-76.
Lowery, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.
Mackie, I. M. 1982. Fish protein hydrolysates. Process Biochemistry. 31: 26-31.
Mansur, M. A., Bhadra, A., Takamura, H. and Matoba, T. 2002. Effect of processing and storage on the radical scavenging activity of horse mackerel and sardine. Fish. Sci. 68: 1390-1392.
Maruyama, S., Nakagomi, K., Tomizuka, N. and Suzuki, H. 1985. Angiotensin I-converting enzyme inhibitor derived from and enzymatic dydrolysate of casein. II.Isolation and Bradykinin- potentiating activity on the uterus and the ileum of rats. Agr. Biol. Chem. 49: 1405-1409.
Moore, S. and Stein, W. H. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211: 907-915.
Murase, H., Nagao, A. and Terao, J. 1993. Antioxidant and emulsifying activity of N-(Long-chain-acyl) histidine and N-(Long-chain-acyl) carnosine. J. Agric. Food Chem. 41: 1601-1604.
Murata, Y., Henmi, H. and Nishioka, F. 1994. Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fish. Sci. 60(4): 473-478.
Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257.
Namiki, M. 1990. Antioxidants/antimutagens in foods. Crit. Rev. Food Sci. Nutr. 29: 273-300.
O’Dowd, J. J., Cairns, M. T., Trainor, M. Robins, D. J. and Miller, D. J. 1990. Analysis of carnosine, homocarnosine, and other histidinyl derivatives in rat brain. J. Neurochem. 55: 446-452.
Orejana, F. M. and Liston, J. 1982. Agents of proteolysis and its inhibition in Patis (fish sauce) fermentation. J. Food Sci. 47: 198-203.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35(11): 771-775.
Palmer, T.N. 1971. The substrate specificity of acid alpha-glucosidase from rabbit muscle. Biochem. J. 124: 701-711.
Peterson, G. L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biochem. 100: 201-220.
Quaglia, G. B. and Orban, E. 1987. Enzymic solubilisation of sardin (Sardina pilchardus) by commercial proteases. J. Sci. Food Agric. 38: 263-269.
Quinn, P., Boldyrev, A. and Formazuyk, V. 1992. Carnosine: its properties, functions and potential therapeutic applications. Molec. Aspects Med. 13:379-444.
Rebeca, B. D., Pena-Vera, M. T. and Diaz-castaneda, M. 1991. Production of fish protein hydrolysates with bacterial protease, yield and nutritional value. J. Food Sci. 56(2): 309-314.
Sanger, F. and Tuppy, H.. 1951. The amino acid s equence in the phenylanine chain of insulin. 1. the investigatuon of peptides from enzymatic hydrolysates. Biochem. J. 49: 481-490.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Stadtman, E. R. 1992. Protein oxidation and aging. Science. 257: 1220-1224.
Stadtman, E. R. and Oliver, C. N. 1991. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem. 266: 2005-2008.
Suetsuna, K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Marine Biotechnology. 2: 5-10.
Sugiyama, K., Egawa, M., Onzuka, H. and Oba, K. 1991. Characteristics of sardine muscle hydrolysates prepared by various enzymic treatment. Bull. Jap. Soc. Sci. Fish. 57(3): 475-479.
Taylor, W. H. 1962. Proteinases of the stomach in health and disease. Physiol. Rev. 42: 519.
Toshiro, M., Hiroshi, M., Eiji, S., Katsuhiro, O., Masatoshi, N. and Yutaka, O. 1993. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci. Biotech. Biochem. 57(6): 922-925.
Tsuda, T., Fujii, M., Watanabe, M., Nakakuki, H., Ohshima, K., Osawa, T. and Kawakishi, S. 1994. Antioxidative activity of red bean extract and its application to food. Nippon Shokuhin Kogyo Gakkaishi. 41(7): 475-480.
Tsuge, N., Eikawa, Y., Nomura, Y., Yamamoto, M. and Sugisawa, K. 1991. Antioxidative activity of peptides prepared by enzymatic hydrolysis of egg-white albumin. Nippon Nogeikagaku Kaishi. 65(11): 1635-1641.
Uchida, K. and Kawakishi, S. 1992. Sequence-dependent reactivity of histidine-containing peptides with copper(II)/ascorbate. J. Agric. Food Chem. 40: 13-16.
Wong, D. W. S. 1995. Food Ezymes: structure and mechanism. Chapman and Hall Press. New York, USA.
Yamaguchi, N., Yokoo, Y. and Fufimaki, M. 1975a. Studies on antioxidative activities of amino compounds of fats and oils. Part II. Antioxidative activities of dipeptides and their synergistic effects on tocopherol. Nippon Shokuhin Kogyo Gakkaishi. 22(9): 425-430.
Yamaguchi, N., Yokoo, Y. and Fufimaki, M. 1979. Antioxidant activities of protein hydrolyzates. Nippon Shokuhin Kogyo Gakkaishi. 26(2): 65-70.
Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 62: 1201-1204.
Yee, J. J. Shipe, W. F. and Kinsella, J. E. 1980. Antioxidant effects of soy protein hydrolysates on copper-catalyzed methyl linoleic acid oxidation. J. Food Sci. 45: 1082- 1083.
Yen, G. C. and Chen, H. Y. 1995. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 41: 67-70.
Yokoyama, K., Chiba, H. and Yoshikawa, M. 1992. Peptide inhibitors for angiotensin I-converting enzyme from trermolysin digest of dried bonito. Biosci. Biotech. Biochem. 56(10): 1541-1545.
Yoshinaka, R., Sato, M., Tsuchiya, N. and Ikeda, S. 1983. Production of fish saue by utilization of its viscera enzyme. Bull. Jap. Soc. Sci. Fish. 49(3): 463-469.
吳清熊和邱思魁 [譯著],1996。水產食品學,國立編譯館,台北。
吳蕙君,1998。魚貝類抽出物抗氧化性之探討,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
金宗濂、文鏡、唐粉芳和陳文,1995。功能食品評價原理及方法,北京大學出版社,pp.67-85。
邱思魁、藍惠玲和蕭泉源,1999。養殖臺灣蜆於不同貯藏溫度下腺苷三磷酸及其相關化合物與游離胺基酸之變化,中國農業化學會誌,37(1):42-53。
林君霏,1995。文蛤貯藏中的生化學變化及其萃取物成分季節變動之探討,國立台灣海洋大學水產食品科學系碩士學位論文,基隆。
林岳暉,1996。以無血清培養模式研究文蛤萃取液對細胞性免疫力之影響。國立台灣海洋大學水產食品科學系碩士論文。基隆。
林瑩禎,1999a。日本機能性食品市場概況,食品市場資訊,88(12):7-9。
林瑩禎,1999b。我國保健食品市場現況與趨勢,食品市場資訊,88(12):1-3。
林瑩禎,2000。全球機能性食品發展概況,食品市場資訊,89(05):26。
野中順三九,1987。水產利用原料,恆星省厚生閣,東京,pp.195-254。
陳自珍,1978。食品酵素學。復文書局。台南。
曾文陽和陳世欽,1974。鹿港養殖文蛤成長之初步研究,中國水產,264:9-15。
曾吉偉,2001。酵素水解魚肉生產胜肽及其抗氧化特性之研究。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
程金燕,2000。由改善腸胃道的功能來探討機能性食品的功效。食品工業。32(6):48-56。
彭詩純,2003。鯖魚肉酵素水解物之游離胺基酸及胜肽與抗氧化性及苦味之關係。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
漁業署,2002。中華民國台灣地區漁業年報,台北。
楊炯政,2004。利用酵素水解白肉雞、鮭魚和文蛤肉作為保健食品基質之研究。中國文化大學生活應用科學系碩士論文。台北。
楊鴻禧和丁雲源,1984。文蛤人工繁殖之研究。台灣省水產試驗所試驗報告,36:98-111。
賴呈委,2000。文蛤凝集素樣成份之腫瘤細胞凋亡調節作用。國立台灣海洋大學食品科學系碩士論文。基隆。
饒家麟和柯文慶,2001。鯖魚蒸煮液蛋白質水解物之抗氧化特性,台灣農業化學與食品科學,39(5):363-369。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top