跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴銘賢
研究生(外文):Dai, Mingsian
論文名稱:飛機座椅與乘客碰撞模擬分析
論文名稱(外文):Impact Simulation and Analysis of Aircraft Seat and Occupant
指導教授:胡惠文
指導教授(外文):Hu, Huiwen
口試委員:王栢村施丞貴
口試委員(外文):Wang, Bor-TsuenShy, Cherng-Gueih
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:126
中文關鍵詞:飛機座椅乘客安全14 g 與16 g 動態測試假人頭部傷害指數腰椎軸向負載大腿股骨軸向負載
外文關鍵詞:Aircraft seatOccupant protection14G and 16G dynamic testHybrid III DummyHICLumbar loadsFemur loads
相關次數:
  • 被引用被引用:2
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的為利用有限元素分析法,進行碰撞模擬分析以探討飛機座椅之安全設計。使用分析軟體ANSYS建立座椅有限元素模型。依據美國聯邦航空總署所訂定的座椅動態測試法規(14 CFR 25.562),即模擬飛機於緊急迫降時,座椅產生減速度達14 g與16 g之負載條件。飛機座椅有限元素分析模型包含:座椅主結構、座椅軟墊、乘客安全約束系統以及餐盤等附屬組件。座椅材料性質皆由材料試驗所獲得,主結構材料模組是採用Cowper-Symonds Plasticity Model,此模組可考慮應變率對於材料變形行為的影響,適用於金屬等向性材料的塑性變形分析。碰撞假人模型使用LSTC公司所提供之Hybrid III 50th Percentile Dummy。本研究使用LS-DYNA動態求解器,使用LS-PrePost前後處理軟體輸出模擬結果。觀察座椅含假人整體碰撞過程動態情形,依據座椅動態測試法規訂立之評判標準,分別探討座椅變形與損壞情形是否阻礙乘客緊急逃生路線,再輸出假人頭部傷害指數、腰椎與骨盆間軸向負載以及大腿股骨軸向負載,以判斷乘客是否安全。
The objective of this research is to investigate the design of aircraft seat and occupant safety using finite element method. A commercial code ANSYS is used to establish the finite element model, including aircraft seats and dummies. The impact analyses of 14 g and 16 g deceleration are performed to simulate the emergency landing of the aircraft based on the safety regulation of transport airplane prescribed from Federal Aviation Administration, called title 14 code of federal regulations part 25 sec. 25.562. The finite element model of aircraft seat includes the primary structures, seat cushions, occupant restraint systems, food tray table and other plastic attachments. The material properties are obtained from the tensile and compressive tests. Cowper-Symonds plasticity model is used to simulate the dynamic behavior of materials. This model considers the strain-rate effect on materials while they are subjected to impact loading. The finite element model of Hybrid III 50th Percentile Dummy, provided from Livermore Software Technology Corporation (LSTC), is adopted for the simulation. A commercial code LS-DYNA is used to solve the impact simulation. The plastic deformation of seat structure is of concern. After the impact crash, the deformation of seat
can not impede the rapid evacuation of occupants. The acceleration and resultant forces of dummies are obtained from the impact simulation and are used to assess the potential injuries of occupant during the impact, such as the head injury criteria (HIC), the maximum compressive load measured between the pelvis and the lumbar column, and the axially compressive loads of dummies.

摘要.......................................................I
Abstract..................................................II
謝 誌.....................................................IV
目錄.......................................................V
表目錄...................................................VIII
圖目錄.....................................................IX
第1章 緒論..................................................1
1.1 研究動機與目的...........................................1
1.2 飛機座椅動態測試法規(14 CFR Part 25.562) [6]..............3
1.3 文獻回顧................................................4
1.4 全文概述...............................................15
第2章 飛機座椅之電腦輔助工程設計與分析..........................16
2.1 飛機座椅系統介紹.........................................16
2.2 材料機械性質測試.........................................18
2.3 飛機座椅有限元素模型.....................................25
2.3.1 有限元素模型建立.......................................25
2.3.2 模型連接定義..........................................29
2.3.3 材料模組定義..........................................35
2.3.4 接觸型式定義..........................................40
2.4 人形測試設備(Anthropomorphic Test Device, ATD)..........41
2.4.1 人形測試設備介紹.......................................41
2.4.2 Hybrid III 50th Percentile Dummy碰撞假人.............48
2.5 座椅主要負載傳遞路徑.....................................56
2.6 座椅預變形扭轉治具模型建立................................58
2.7 碰撞模擬座椅安裝配置.....................................60
第3章 飛機座椅碰撞模擬與分析..................................64
3.1 座椅14G垂直向下碰撞動態模擬...............................64
3.1.1 邊界與負載條件設定.....................................64
3.1.2 碰撞分析結果與討論.....................................67
3.1.3 假人傷害指數..........................................79
3.2 座椅16 G水平向前碰撞動態模擬..............................84
3.2.1 邊界與負載條件設定.....................................84
3.2.2 座椅預變形模擬結果與討論................................88
3.2.3 碰撞分析結果與討論.....................................90
3.2.4 座椅變形安全性評估....................................104
3.2.5 假人傷害指數.........................................111
第4章 結論................................................118
4.1 結論.................................................118
4.2 後續探討方向...........................................121
參考文獻..................................................122
作者簡介..................................................126

[1] Statistics, 2013, Number of Accidents Per Year / Number of Accidents with Greater than 99 Fatalities, at: http://www.planecrashinfo.com/cause.htm
[2] Aviation Safety Boeing Commercial Airplanes, 2013, “Statistical Summary of Commercial Jet Airplane Accidents,” The Boeing Company.
[3] Guy N., 2013, Learning Lessons from Asiana Flight 214, at: http://aviationweek.com/blog/learning-lessons-asiana-flight-214
[4] Tittle 14 Code of Federal Regulation, Part 25.561, 1964, “Emergency Landing Dynamic Condition,” Federal Aviation Administration.
[5] James B. K., 1981, ”Safety Recommendation(s),” National Transportation Safety Board.
[6] Tittle 14 Code of Federal Regulation, Part 25.562, 1988, “Emergency Landing Dynamic Condition,” Federal Aviation Administration.
[7] Aerospace Standard 8049, 2005, “Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft,” SAE International Aerospace.
[8] Technical Standard Order, 1998, “TSO-C127a, Rotorcraft, Transport Airplane, and Normal and Utility Airplane Seating Systems,” Department of Transportation Federal Aviation Administration Aircraft Certification Service.
[9] Aerospace Recommended Practice 5526, 2011, “Aircraft Seat Design Guidance and Clarifications,” SAE International Aerospace.
[10] Advisory Circular 25.562-1B, 2006, “Dynamic Evaluation of Seat Restraint Systems and Occupant Protection on Transport Airplanes,” Federal Aviation Administration.
[11] Advisory Circular 20-146, 2003, “Methodology for Dynamic Seat Certification by Analysis for Use in Parts 23, 25, 27, and 29 Airplanes and Rotorcraft,” Federal Aviation Administration.
[12] Aerospace Recommended Practice 5765, 2012, “Analytical Methods for Aircraft Seat Design and Evaluation,” SAE International Aerospace.

[13] Prasannakumar B. and Hamid L., 2008, “Finite Element Modeling Strategies for Dynamic Aircraft Seats,” SAE TECHNICAL PAPER SERIES.
[14] 49 CFR Part 572 B, 1977, “Subpart B—50th Percentile Male,” Federal Aviation Administration.
[15] 49 CFR Part 572 E, 1985, “Subpart E—Hybrid III Test Dummy,” Federal Aviation Administration.
[16] Van G., Micheal S. B, Barry W., John D., Randy K. and James L. B., 1999, “A Lumbar Spine Modification to the Hybrid III ATD For Aircraft Seat Tests,” SAE TECHNICAL PAPER SERIES.
[17] Sarba G., Dilip B. and Jacob K., 2011, “LSTC Hybrid III 50th Fast Dummy Positioning &; Post‐Processing,” Livermore Software Technology Corporation.
[18] Lissner H. R., Lebow M.E. and Evans F.G., 1960, “Experimental studies on the relation between acceleration and intracranial pressure changes in man,” Surg Gynecol Obstet, Vol. 111, pp. 329-338.
[19] McLean A. J. and Robert W. G. A., 1997, “Biomechanics of Closed Head Injury,” Head Injury, pp. 25-37.
[20] John H., Mark J. K. and Hamid M. L., 1998, “The Head Injury Criterion (HIC) functional,” Applied Mathematics and Computation, Vol. 96, pp.1-16.
[21] Ala T., Charles L. and Edwin L. F., 2000, “Validation of Finite Element Crash Test Dummy Models for the Prediction of Orion Crew Member Injuries during a Simulated Vehicle Landing,” 10th International LS-DYNA® Users Conference, Simulation Technology, pp. 18-28.
[22] Tyrell D., Severson K. and Marguis B., 1995, “Passenger Train Crashworthiness Studies,” US Department of Transportation, at: http://www.eurailsafe.net/subsites/operas/HTML/appendix/Table13.htm.
[23] Stech E. L. and Payne P. R., 1969, “Dynamic Models of the Human Body,” Aerospace Medical Research Laboratory.

[24] Joseph A. P., David M. and Gerardo O., 2011, “Anthropomorphic Test Dummy Lumbar Load Variation,” National Institute for Aviation Research, USA, Paper Number 11-0157.
[25] Oliva-Perez O., 2010, “Evaluation of the FAA Hybrid III 50th Percentile Anthropometric Test Dummy under the FAR 23.562 and 25.562 Emergency Landing Conditions for the Combined Horizontal-vertical Dynamic Loading,” Wichita State University.
[26] Todd R. H. and Jill M. V., 2002, “Small Airplane Crashworthiness Design Guide,” Simula Technologies, Inc.
[27] Nilesh D., Vikas Y. and Gerardo O., 2012, “Certification by Analysis of a Typical Aircraft Seat,” 10th International LS-DYNA® Users Conference, Automotive.
[28] Nilesh D., 2010, “Development and Validation of a Finite Element Model of a Transport Aircraft Seat Under Part 25.562 Dynamic Test Conditions,” Wichita State University.
[29] Olivares G., Acosta J. F. and Yadav V., 2010, “Certification by Analysis I and II,” Wichita State University.
[30] Ghanashyam P., 2006, “Parametric Study of Head Paths and HIC Data for Aircraft Seat and Cabin Interior Certification,” Wichita State University.
[31] Su X. Y., Yu T. X. and Reid S. R., 1995, “Inertia-sensitive Impact Energy-absorbing Structures PART II: Effect of Strain Rate,” Int. J. Impact Engng, Vol. 16, No. 4, pp. 673-689.
[32] ASTM D 6775-02, 2002, “Standard Test Method for Breaking Strength and Elongation of Textile Webbing, Tape and Braided Material,” American Society for Testing and Materials.
[33] Joey,2014,如何指定CONTACT_TIE的黏著距離,勢流科技股份有限公司。
[34] 高懷恩,2009,超輕飛機結構設計與分析,碩士論文,國立屏東科技大學,車輛工程系,屏東。
[35] Schmailzl A., Amann T., Glockner M. and Fadanelli M., 2012, “Finite element analysis of thermoplastic probes under tensile load using LS-DYNA compared to ANSYS WB 14 in correlation to experimental investigations,” ANSYS Conference &; 30th CADFEM Users’ Meeting.
[36] Livermore Software Technology Corporation, 2010, “LS-DYNA Keyword User's Manual.”
[37] Humanetics Innovative Solutions, 2014, Crash Test Dummies, at: http://www.humaneticsatd.com/crash-test-dummies

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top