跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林晃業
研究生(外文):Huang-YaLin
論文名稱:微奈米結構射出成型之研究
論文名稱(外文):Experimental and Analytical Study on Filling of Nano and Micro Structures in Micro Injection Molding
指導教授:楊文彬楊文彬引用關係
指導教授(外文):Wen-Bin Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:133
中文關鍵詞:射出成型紅外線加熱
外文關鍵詞:Micro injection moldingMold insertLIGA-LIKEInfrared heating system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,奈米以及微米的應用越來越受到重視,而許多利用奈米科技製作的產品中,很多皆為塑膠的製品,微射出成型在塑膠製作的產業上是一個很重要的製程。如果想要能夠成功的成型微奈米的結構,塑料如何充填微結構的能力是最重要的,所以在整個成型的過程中,塑料的流動情形以及狀態就需要進一步的研究及探討,在這研究中,我們會從理論上以及實驗上來探討成型的條件對於微結構充填的影響。首先利用類LIGA的製程做出具有微米或是奈米結構的模仁來進行實驗,接下來利用理論推導出塑料在充填微結構的模型,再拿來和實驗結果進行驗證。有了這個驗證過的模型,就可以利用這模型來預估塑料在微結構中充填的深度,當然也可以反過來利用這模型找出適當的製程參數。由於奈米結構在一般條件中難以充填滿,所以在模仁的充填中,我們導入紅外線加熱系統,來提高模仁溫度,進而提升塑料在微結構中的充填深度。
Nano and micro technology is attracting more attention and has increasing applications in recent years. Among the products with applications of nano technology, many of them are made of polymer plastics. Micro injection molding is one of the important processes for polymer plastics. In micro injection molding, the ability for the polymer melt to flow into the micro/nano features is a crucial factor for successful molding. The flow behavior of polymer in micro/nano features needs to be explored further to facilitate the molding process. In this study, we investigated the effects of the processing conditions on the filling of micro/nano features analytically and experimentally. Firstly, mold inserts with micro or nano features were constructed by LIGA-LIKE process. Secondly, an analytical model was developed to model the filling of polymer melt in the micro/nano features. Molding experiments were performed to verify the analytical filling model. With this verified model, a theoretical filling distance can be predicted for the micro/nano injection molding, and the suitable processing conditions can be estimated for different geometries of product. Finally, the Infrared heating system is introduced to improve the penetration distance in nano feature filling.
ABSTRACT IN CHINESE i
ABSTRACT v
ACKNOWLEDGMENTS vi
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
NOMENCLATURE xvi
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 LIGA-LIKE Process 2
1-2-1 UV Thick Film Resist Lithography 3
1-2-2 Electron Beam Lithography 4
1-2-3 Electroforming 4
1-2-4 Micro Injection Molding 5
1-2-5 Variotherm 7
1-3 Literature review 8
1-3-1 X-Ray Lithography 8
1-3-2 UV Thick Film Resist Lithography 8
1-3-3 Electron Beam Lithography 10
1-3-4 Electroforming 10
1-3-5 Micro injection molding 11
1-3-6 Variotherm 12
1-4 Motive 13
1-5 Studying procedure 14
CHAPTER 2 ANALYTICAL MODEL 15
2-1 MoldFlow 15
2-2 Model assumption 17
2-3 Cross-WLF viscosity model 20
2-4 Pressure distribution 24
2-5 Temperature distribution 29
CHAPTER 3 EXPERIMENTAL SETUP 34
3-1 Substrate with micro channels 34
3-1-1 UV Lithography 36
3-2 Substrate with nano channels 42
3-2-1 Electron Beam Lithography 42
3-2-2 ICP-RIE 45
3-3 E-Beam PVD 47
3-4 Electroforming through channels 47
3-5 Injection Molding 54
3-6 Infrared heating system 60
3-7 Measurement 61
CHAPTER 4 INJECTION MOLDING IN MICRO CHANNELS 66
4-1 Injection molding 66
4-1-1 Filling rate 68
4-1-2 Controller temperature 69
4-1-3 Melt temperature 70
4-1-4 Packing pressure 71
4-1-5 Effects for different plastics 72
4-2 Mold surface temperature 72
4-2-1 Experimental 73
4-2-2 Simulation by Ansys 74
4-3 Geometry 80
4-3-1 Geometric factor 80
4-3-2 Heat transfer coefficient between mold and polymer 81
4-3-3 Air trap 82
4-3-4 Verification of the analytical model 83
4.3.4.1 Mold temperature 84
4.3.4.2 Melt temperature 85
4.3.4.3 Packing pressure 87
4-4 Channel width 88
4-5 Thickness of cavity 89
CHAPTER 5 INJECTION MOLDING IN NANO CHANNELS 91
5-1 Nano Molding 91
5-1-1 Mold temperature 94
5-1-2 Melt temperature 95
5-1-3 Packing pressure 95
5-1-4 Application 96
5-2 Molding with infrared heating system 98
5-2-1 Heating with coolant on or off 99
5-2-2 Heating with an insert bakelite 104
5-2-3 Cycle time 107
CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 109
6-1 Conclusion 109
6-2 Suggestions for future work 112
REFERENCES 113
APPENDIX A-1 118
APPENDIX A-2 123
APPENDIX A-3 125
APPENDIX A-4 128
ABSTRACT IN CHINESE i
ABSTRACT v
ACKNOWLEDGMENTS vi
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
NOMENCLATURE xvi
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 LIGA-LIKE Process 2
1-2-1 UV Thick Film Resist Lithography 3
1-2-2 Electron Beam Lithography 4
1-2-3 Electroforming 4
1-2-4 Micro Injection Molding 5
1-2-5 Variotherm 7
1-3 Literature review 8
1-3-1 X-Ray Lithography 8
1-3-2 UV Thick Film Resist Lithography 8
1-3-3 Electron Beam Lithography 10
1-3-4 Electroforming 10
1-3-5 Micro injection molding 11
1-3-6 Variotherm 12
1-4 Motive 13
1-5 Studying procedure 14
CHAPTER 2 ANALYTICAL MODEL 15
2-1 MoldFlow 15
2-2 Model assumption 17
2-3 Cross-WLF viscosity model 20
2-4 Pressure distribution 24
2-5 Temperature distribution 29
CHAPTER 3 EXPERIMENTAL SETUP 34
3-1 Substrate with micro channels 34
3-1-1 UV Lithography 36
3-2 Substrate with nano channels 42
3-2-1 Electron Beam Lithography 42
3-2-2 ICP-RIE 45
3-3 E-Beam PVD 47
3-4 Electroforming through channels 47
3-5 Injection Molding 54
3-6 Infrared heating system 60
3-7 Measurement 61
CHAPTER 4 INJECTION MOLDING IN MICRO CHANNELS 66
4-1 Injection molding 66
4-1-1 Filling rate 68
4-1-2 Controller temperature 69
4-1-3 Melt temperature 70
4-1-4 Packing pressure 71
4-1-5 Effects for different plastics 72
4-2 Mold surface temperature 72
4-2-1 Experimental 73
4-2-2 Simulation by Ansys 74
4-3 Geometry 80
4-3-1 Geometric factor 80
4-3-2 Heat transfer coefficient between mold and polymer 81
4-3-3 Air trap 82
4-3-4 Verification of the analytical model 83
4.3.4.1 Mold temperature 84
4.3.4.2 Melt temperature 85
4.3.4.3 Packing pressure 87
4-4 Channel width 88
4-5 Thickness of cavity 89
CHAPTER 5 INJECTION MOLDING IN NANO CHANNELS 91
5-1 Nano Molding 91
5-1-1 Mold temperature 94
5-1-2 Melt temperature 95
5-1-3 Packing pressure 95
5-1-4 Application 96
5-2 Molding with infrared heating system 98
5-2-1 Heating with coolant on or off 99
5-2-2 Heating with an insert bakelite 104
5-2-3 Cycle time 107
CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 109
6-1 Conclusion 109
6-2 Suggestions for future work 112
REFERENCES 113
APPENDIX A-1 118
APPENDIX A-2 123
APPENDIX A-3 125
APPENDIX A-4 128
PUBLICATION LIST 132
VITA 133


[1] Yao, D. G., and Kim, B., 2002, Simulation of the filling process in micro channels for polymeric materials, Journal of Micromechanics and Microengineering, 12(5), pp. 604-610.
[2] Chen, J.-R., 2003, Micro elctro mechanical systems technology & application, ITRC.
[3] Rai-Choudhury, P., 2000, Handbook of Microlithography, Micromachining, and Microfabrication, Society of Photo Optical.
[4] PEARSON, J. R. A., 1985, Mechanics of Polymer Processing, Elsevier Applied Science Publishers, London and New York.
[5] Osswald, T. A. T., Lih-Sheng/ Gramann, Paul J., 2007, Injection Molding Handbook, 2nd edition, Hanser Gardner Publications.
[6] Donovan, R. C., Thomas, D. E., and Leversen, L. D., 1971, An experimental study of plasticating in a reciprocating-screw injection molding machine, Polymer Engineering & Science, 11(5), pp. 353-360.
[7] CHUNG, C.-S., 2007, Variable Mold Temperature Method and Study the Surface Quality of Product, Master, National Central University, Jhongli, Taiwan.
[8] Backer, E. W., Ehrfeld, W., M?nchmeyer, D., Betz, H., Heuberger, A., Pongratz, S., Glashauser, W., Michel, H. J., and Siemens, R., 1982, Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics, Naturwissenschaften, 69(11), pp. 520-523.
[9] Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., and M?nchmeyer, D., 1986, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectronic Engineering, 4(1), pp. 35-56.
[10] Guckel, H., 1998, High-aspect-ratio micromachining via deep X-ray lithography, Proceedings of the IEEE, 86(8), pp. 1586-1593.
[11] Frazier, A. B., and Allen, M. G., High aspect ratio electroplated microstructures using a photosensitive polyimide process, Proc. Micro Electro Mechanical Systems, 1992, MEMS '92, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE, pp. 87-92.
[12] Lorenz, H., Despont, M., Vettiger, P., and Renaud, P., 1998, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist, Microsystem Technologies, 4(3), pp. 143-146.
[13] Chan-Park, M. B., Zhang, J., Yan, Y., and Yue, C. Y., 2004, Fabrication of large SU-8 mold with high aspect ratio microchannels by UV exposure dose reduction, Sensors and Actuators B: Chemical, 101(1-2), pp. 175-182.
[14] Tseng, F.-G., and Yu, C.-S., 2002, High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photoresist, Sensors and Actuators A: Physical, 97-98, pp. 764-770.
[15] Yang, S.-P., 2003, Study on Micro-injection Molding Technology with applications of Microfluidics, master, National Cheng Kung University, Tainan, Taiwan.
[16] Chang, H.-C., 2004, Effects of Process Conditions on Filling in Injection Molding with Circular Micro-Features, master, National Cheng Kung University, Tainan, Taiwan.
[17] AZ History, http://www.az-em.com/history.html.
[18] Conedera, V., Le Goff, B., and Fabre, N., 1999, Potentialities of a new positive photoresist for the realization of thick moulds, Journal of Micromechanics and Microengineering, 9(2), pp. 173-175.
[19] Leech, P. W., and Zeidler, H., 2003, Microrelief structures for anti-counterfeiting applications, Microelectronic Engineering, 65(4), pp. 439-446.
[20] Pan, C. T., and Su, C. H., 2008, Fabrication of high fill factor optical film using two-layer photoresists, Journal of Modern Optics, 55(1), pp. 33 - 42.
[21] Qiang, C., Gang, L., Qing-Hui, J., Jian-Long, Z., Qiu-Shi, R., and Yuan-Sen, X., 2007, A Rapid and Low-Cost Procedure for Fabrication of Glass Microfluidic Devices, Microelectromechanical Systems, Journal of, 16(5), pp. 1193-1200.
[22] Ahmed, H., 1980, ELECTRON-BEAM LITHOGRAPHY FOR INTEGRATED-CIRCUIT FABRICATION, Physics in Technology, 11(5), pp. 169-174.
[23] Katoh, T., Nagamune, Y., Li, G. P., Fukatsu, S., Shiraki, Y., and Ito, R., 1990, FABRICATION OF ULTRAFINE GRATINGS ON GAAS BY ELECTRON-BEAM LITHOGRAPHY AND 2-STEP WET CHEMICAL ETCHING, Applied Physics Letters, 57(12), pp. 1212-1214.
[24] Ye, J.-Y., Mizeikis, V., Xu, Y., Matsuo, S., and Misawa, H., 2002, Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice, Optics Communications, 211(1-6), pp. 205-213.
[25] Stomeo, T., Passaseo, A., Cingolani, R., and De Vittorio, M., 2004, Fast nanopatterning of two-dimensional photonic crystals by electron beam lithography, Superlattices and Microstructures, 36(1-3), pp. 265-270.
[26] Lin, J.-H., 2007, Photonic Crystal and Circular Photonic Crystal-Design and Fabrication, Doctor, National Chung Cheng University, Chiayi, Taiwan.
[27] Yeh, Y.-M., 2003, Fabrication and Characterization Analysis of Ni-Fe Micro Mold by Pulse Electroforming in LIGA-like Technology, Doctor, National Chiao Tung University Hsinchu, Taiwan
[28] Yoshida, H., Sone, M., Wakabayashi, H., Yan, H., Abe, K., Tao, X. T., Mizushima, A., Ichihara, S., and Miyata, S., 2004, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films, 446(2), pp. 194-199.
[29] Tsai, T.-H., 2004, Research of High Aspect Ratio Electroforming Technology and Replication Process, master, National Chung Hsing University Taichung, Taiwan
[30] Leith, S. D., and Schwartz, D. T., 1999, High-rate through-mold electrodeposition of thick (>200 μm) NiFe MEMS components with uniform composition, Microelectromechanical Systems, Journal of, 8(4), pp. 384-392.
[31] Kohlmeier, T., Seidemann, V., B?ttgenbach, S., and Gatzen, H. H., 2002, Application of UV depth lithography and 3D-microforming for high aspect ratio electromagnetic microactuator components, Microsystem Technologies, 8(4), pp. 304-307.
[32] Piotter, V., Bauer, W., Benzler, T., and Emde, A., 2001, Injection molding of components for microsystems, Microsystem Technologies, 7(3), pp. 99-102.
[33] Piotter, V., Holstein, N., Plewa, K., Ruprecht, R., and Hausselt, J., 2004, Replication of micro components by different variants of injection molding, Microsystem Technologies, 10(6), pp. 547-551.
[34] Ruprecht, R., Gietzelt, T., M?ller, K., Piotter, V., and Hau?elt, J., 2002, Injection molding of microstructured components from plastics, metals and ceramics, Microsystem Technologies, 8(4), pp. 351-358.
[35] Mekaru, H., Yamada, T., Yan, S., and Hattori, T., 2004, Microfabrication by hot embossing and injection molding at LASTI, Microsystem Technologies, 10(10), pp. 682-688.
[36] Chang, H.-C., 2003, Effects of Process Conditions on Filling in Injection Molding with Circular Micro-Features, master, National Cheng Kung University, Tainan, Taiwan.
[37] Fu, G., Loh, N. H., Tor, S. B., Murakoshi, Y., and Maeda, R., 2004, Replication of metal microstructures by micro powder injection molding, Materials & Design, 25(8), pp. 729-733.
[38] Piotter, V., Mueller, K., Plewa, K., Ruprecht, R., and Hausselt, J., 2002, Performance and simulation of thermoplastic micro injection molding, Microsystem Technologies, 8(6), pp. 387-390.
[39] Despa, M. S., Kelly, K. W., and Collier, J. R., 1999, Injection molding of polymeric LIGA HARMs, Microsystem Technologies, 6(2), pp. 60-66.
[40] Liou, A. C., and Chen, R. H., 2006, Injection molding of polymer micro- and sub-micron structures with high-aspect ratios, The International Journal of Advanced Manufacturing Technology, 28(11), pp. 1097-1103.
[41] Kang, S. N., 2004, Replication technology for micro/nano optical components, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 43(8B), pp. 5706-5716.
[42] Pranov, H., Rasmussen, H. K., Larsen, N. B., and Gadegaard, N., 2006, On the injection molding of nanostructured polymer surfaces, Polymer Engineering and Science, 46(2), pp. 160-171.
[43] Rust, M. J., Do, J., Se Hwan, L., and Ahn, C. H., 2007, Nanoinjection Lithography for Submicrometer Electrodes on Polymer Substrates, Nanotechnology, IEEE Transactions on, 6(4), pp. 460-464.
[44] Lee, N., Han, J., Lim, J., Choi, M., Han, Y., Hong, J., and Kang, S., 2008, Injection molding of nanopillars for perpendicular patterned magnetic media with metallic nanostamp, Japanese Journal of Applied Physics, 47(3), pp. 1803-1805.
[45] Yu, L., Lee, L. J., and Koelling, K. W., 2004, Flow and heat transfer simulation of injection molding with microstructures, Polymer Engineering and Science, 44(10), pp. 1866-1876.
[46] Lee, J. G., Lee, B. K., Kang, T. G., and Kwon, T. H., 2010, Experimental and Numerical Investigation of Injection Molding with Microrib Patterns, Polymer Engineering and Science, 50(6), pp. 1186-1198.
[47] Eringen, A. C., and Okada, K., 1995, A lubrication theory for fluids with microstructure, International Journal of Engineering Science, 33(15), pp. 2297-2308.
[48] Yung, K. L., He, L., Xu, Y., and Shen, Y. W., 2006, Study of surface conditions and shear flow of LCP melts in nanochannels through molecular dynamics simulation, Polymer, 47(12), pp. 4454-4460.
[49] Yao, D., and Kim, B., 2002, Development of rapid heating and cooling systems for injection molding applications, Polymer Engineering & Science, 42(12), pp. 2471-2481.
[50] Chen, S.-C., Jong, W.-R., and Chang, J.-A., 2006, Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line, Journal of Applied Polymer Science, 101(2), pp. 1174-1180.
[51] Chen, S. C., Peng, H. S., Chang, J. A., and Jong, W. R., 2004, SIMULATIONS AND VERIFICATIONS OF INDUCTION HEATING ON A MOLD PLATE, International Communications in Heat and Mass Transfer, 31(7), pp. 971-980.
[52] Kim, Y., Choi, Y., and Kang, S. N., 2005, Replication of high density optical disc using injection mold with MEMS heater, Microsyst. Technol., 11(7), pp. 464-469.
[53] CHUNG, C.-S., 2007, Variable Mold Temperature Method and Study the Surface Quality of Product, master, National Central University, Jhongli, Taiwan.
[54] Chen, F.-T., 2007, Development of a Steam Based Variotherm Molding System, master, National Cheng Kung University, Tainan,Taiwan.
[55] Saito, T., Satoh, I., and Kurosaki, Y., 2002, A new concept of active temperature control for an injection molding process using infrared radiation heating, Polymer Engineering and Science, 42(12), pp. 2418-2429.
[56] Chang, P.-C., and Hwang, S.-J., 2006, Experimental investigation of infrared rapid surface heating for injection molding, Journal of Applied Polymer Science, 102(4), pp. 3704-3713.
[57] Yu, M. C., Young, W. B., and Hsu, P. M., 2007, Micro-injection molding with the infrared assisted mold heating system, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 460, pp. 288-295.
[58] Liyong Yu, C. G. K. L. J. L. K. W. K. M. J. M., 2002, Experimental investigation and numerical simulation of injection molding with micro-features, Polymer Engineering & Science, 42(5), pp. 871-888.
[59] Young, W. B., 2005, Simulation of the filling process in molding components with micro channels, Microsystem Technologies, 11(6), pp. 410-415.
[60] Xu, B., Ooi, K. T., Wong, T. N., and Liu, C. Y., 1999, Study on the viscosity of the liquid flowing in microgeometry, Journal of Micromechanics and Microengineering(4), p. 377.
[61] Li, C. S., Hung, C. F., and Shen, Y. K., 1994, Computer simulation and analysis of fountain flow in filling process of injection molding, Journal of Polymer Research, 1(2), pp. 163-173.
[62] MacKnight, J. J. A. W. J., 1983, Intronduction to Polymer Visoelasticity, Wiley-Interscience.
[63] Lin, C.-H., 2004, Applications of electron beam lithography to the fabrication of near-field mask, master, Tatung University, Taipei, Taiwan.
[64] Hwu, M.-J., 2003, Electron Beam Lithography Technology for the Application of Deep Sub-micron Heterostructure Field-Effect Transistors, Doctor, National Central University, Jhongli City.
[65] Guide to AFM techniques, http://www.spmtips.com/howto/mode.
[66] Atomic Force Microscopy , http://www.mrsec.wisc.edu/Edetc/nanoquest/afm/index.html.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top