|
[1] Yao, D. G., and Kim, B., 2002, Simulation of the filling process in micro channels for polymeric materials, Journal of Micromechanics and Microengineering, 12(5), pp. 604-610. [2] Chen, J.-R., 2003, Micro elctro mechanical systems technology & application, ITRC. [3] Rai-Choudhury, P., 2000, Handbook of Microlithography, Micromachining, and Microfabrication, Society of Photo Optical. [4] PEARSON, J. R. A., 1985, Mechanics of Polymer Processing, Elsevier Applied Science Publishers, London and New York. [5] Osswald, T. A. T., Lih-Sheng/ Gramann, Paul J., 2007, Injection Molding Handbook, 2nd edition, Hanser Gardner Publications. [6] Donovan, R. C., Thomas, D. E., and Leversen, L. D., 1971, An experimental study of plasticating in a reciprocating-screw injection molding machine, Polymer Engineering & Science, 11(5), pp. 353-360. [7] CHUNG, C.-S., 2007, Variable Mold Temperature Method and Study the Surface Quality of Product, Master, National Central University, Jhongli, Taiwan. [8] Backer, E. W., Ehrfeld, W., M?nchmeyer, D., Betz, H., Heuberger, A., Pongratz, S., Glashauser, W., Michel, H. J., and Siemens, R., 1982, Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics, Naturwissenschaften, 69(11), pp. 520-523. [9] Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., and M?nchmeyer, D., 1986, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectronic Engineering, 4(1), pp. 35-56. [10] Guckel, H., 1998, High-aspect-ratio micromachining via deep X-ray lithography, Proceedings of the IEEE, 86(8), pp. 1586-1593. [11] Frazier, A. B., and Allen, M. G., High aspect ratio electroplated microstructures using a photosensitive polyimide process, Proc. Micro Electro Mechanical Systems, 1992, MEMS '92, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE, pp. 87-92. [12] Lorenz, H., Despont, M., Vettiger, P., and Renaud, P., 1998, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist, Microsystem Technologies, 4(3), pp. 143-146. [13] Chan-Park, M. B., Zhang, J., Yan, Y., and Yue, C. Y., 2004, Fabrication of large SU-8 mold with high aspect ratio microchannels by UV exposure dose reduction, Sensors and Actuators B: Chemical, 101(1-2), pp. 175-182. [14] Tseng, F.-G., and Yu, C.-S., 2002, High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photoresist, Sensors and Actuators A: Physical, 97-98, pp. 764-770. [15] Yang, S.-P., 2003, Study on Micro-injection Molding Technology with applications of Microfluidics, master, National Cheng Kung University, Tainan, Taiwan. [16] Chang, H.-C., 2004, Effects of Process Conditions on Filling in Injection Molding with Circular Micro-Features, master, National Cheng Kung University, Tainan, Taiwan. [17] AZ History, http://www.az-em.com/history.html. [18] Conedera, V., Le Goff, B., and Fabre, N., 1999, Potentialities of a new positive photoresist for the realization of thick moulds, Journal of Micromechanics and Microengineering, 9(2), pp. 173-175. [19] Leech, P. W., and Zeidler, H., 2003, Microrelief structures for anti-counterfeiting applications, Microelectronic Engineering, 65(4), pp. 439-446. [20] Pan, C. T., and Su, C. H., 2008, Fabrication of high fill factor optical film using two-layer photoresists, Journal of Modern Optics, 55(1), pp. 33 - 42. [21] Qiang, C., Gang, L., Qing-Hui, J., Jian-Long, Z., Qiu-Shi, R., and Yuan-Sen, X., 2007, A Rapid and Low-Cost Procedure for Fabrication of Glass Microfluidic Devices, Microelectromechanical Systems, Journal of, 16(5), pp. 1193-1200. [22] Ahmed, H., 1980, ELECTRON-BEAM LITHOGRAPHY FOR INTEGRATED-CIRCUIT FABRICATION, Physics in Technology, 11(5), pp. 169-174. [23] Katoh, T., Nagamune, Y., Li, G. P., Fukatsu, S., Shiraki, Y., and Ito, R., 1990, FABRICATION OF ULTRAFINE GRATINGS ON GAAS BY ELECTRON-BEAM LITHOGRAPHY AND 2-STEP WET CHEMICAL ETCHING, Applied Physics Letters, 57(12), pp. 1212-1214. [24] Ye, J.-Y., Mizeikis, V., Xu, Y., Matsuo, S., and Misawa, H., 2002, Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice, Optics Communications, 211(1-6), pp. 205-213. [25] Stomeo, T., Passaseo, A., Cingolani, R., and De Vittorio, M., 2004, Fast nanopatterning of two-dimensional photonic crystals by electron beam lithography, Superlattices and Microstructures, 36(1-3), pp. 265-270. [26] Lin, J.-H., 2007, Photonic Crystal and Circular Photonic Crystal-Design and Fabrication, Doctor, National Chung Cheng University, Chiayi, Taiwan. [27] Yeh, Y.-M., 2003, Fabrication and Characterization Analysis of Ni-Fe Micro Mold by Pulse Electroforming in LIGA-like Technology, Doctor, National Chiao Tung University Hsinchu, Taiwan [28] Yoshida, H., Sone, M., Wakabayashi, H., Yan, H., Abe, K., Tao, X. T., Mizushima, A., Ichihara, S., and Miyata, S., 2004, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films, 446(2), pp. 194-199. [29] Tsai, T.-H., 2004, Research of High Aspect Ratio Electroforming Technology and Replication Process, master, National Chung Hsing University Taichung, Taiwan [30] Leith, S. D., and Schwartz, D. T., 1999, High-rate through-mold electrodeposition of thick (>200 μm) NiFe MEMS components with uniform composition, Microelectromechanical Systems, Journal of, 8(4), pp. 384-392. [31] Kohlmeier, T., Seidemann, V., B?ttgenbach, S., and Gatzen, H. H., 2002, Application of UV depth lithography and 3D-microforming for high aspect ratio electromagnetic microactuator components, Microsystem Technologies, 8(4), pp. 304-307. [32] Piotter, V., Bauer, W., Benzler, T., and Emde, A., 2001, Injection molding of components for microsystems, Microsystem Technologies, 7(3), pp. 99-102. [33] Piotter, V., Holstein, N., Plewa, K., Ruprecht, R., and Hausselt, J., 2004, Replication of micro components by different variants of injection molding, Microsystem Technologies, 10(6), pp. 547-551. [34] Ruprecht, R., Gietzelt, T., M?ller, K., Piotter, V., and Hau?elt, J., 2002, Injection molding of microstructured components from plastics, metals and ceramics, Microsystem Technologies, 8(4), pp. 351-358. [35] Mekaru, H., Yamada, T., Yan, S., and Hattori, T., 2004, Microfabrication by hot embossing and injection molding at LASTI, Microsystem Technologies, 10(10), pp. 682-688. [36] Chang, H.-C., 2003, Effects of Process Conditions on Filling in Injection Molding with Circular Micro-Features, master, National Cheng Kung University, Tainan, Taiwan. [37] Fu, G., Loh, N. H., Tor, S. B., Murakoshi, Y., and Maeda, R., 2004, Replication of metal microstructures by micro powder injection molding, Materials & Design, 25(8), pp. 729-733. [38] Piotter, V., Mueller, K., Plewa, K., Ruprecht, R., and Hausselt, J., 2002, Performance and simulation of thermoplastic micro injection molding, Microsystem Technologies, 8(6), pp. 387-390. [39] Despa, M. S., Kelly, K. W., and Collier, J. R., 1999, Injection molding of polymeric LIGA HARMs, Microsystem Technologies, 6(2), pp. 60-66. [40] Liou, A. C., and Chen, R. H., 2006, Injection molding of polymer micro- and sub-micron structures with high-aspect ratios, The International Journal of Advanced Manufacturing Technology, 28(11), pp. 1097-1103. [41] Kang, S. N., 2004, Replication technology for micro/nano optical components, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 43(8B), pp. 5706-5716. [42] Pranov, H., Rasmussen, H. K., Larsen, N. B., and Gadegaard, N., 2006, On the injection molding of nanostructured polymer surfaces, Polymer Engineering and Science, 46(2), pp. 160-171. [43] Rust, M. J., Do, J., Se Hwan, L., and Ahn, C. H., 2007, Nanoinjection Lithography for Submicrometer Electrodes on Polymer Substrates, Nanotechnology, IEEE Transactions on, 6(4), pp. 460-464. [44] Lee, N., Han, J., Lim, J., Choi, M., Han, Y., Hong, J., and Kang, S., 2008, Injection molding of nanopillars for perpendicular patterned magnetic media with metallic nanostamp, Japanese Journal of Applied Physics, 47(3), pp. 1803-1805. [45] Yu, L., Lee, L. J., and Koelling, K. W., 2004, Flow and heat transfer simulation of injection molding with microstructures, Polymer Engineering and Science, 44(10), pp. 1866-1876. [46] Lee, J. G., Lee, B. K., Kang, T. G., and Kwon, T. H., 2010, Experimental and Numerical Investigation of Injection Molding with Microrib Patterns, Polymer Engineering and Science, 50(6), pp. 1186-1198. [47] Eringen, A. C., and Okada, K., 1995, A lubrication theory for fluids with microstructure, International Journal of Engineering Science, 33(15), pp. 2297-2308. [48] Yung, K. L., He, L., Xu, Y., and Shen, Y. W., 2006, Study of surface conditions and shear flow of LCP melts in nanochannels through molecular dynamics simulation, Polymer, 47(12), pp. 4454-4460. [49] Yao, D., and Kim, B., 2002, Development of rapid heating and cooling systems for injection molding applications, Polymer Engineering & Science, 42(12), pp. 2471-2481. [50] Chen, S.-C., Jong, W.-R., and Chang, J.-A., 2006, Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line, Journal of Applied Polymer Science, 101(2), pp. 1174-1180. [51] Chen, S. C., Peng, H. S., Chang, J. A., and Jong, W. R., 2004, SIMULATIONS AND VERIFICATIONS OF INDUCTION HEATING ON A MOLD PLATE, International Communications in Heat and Mass Transfer, 31(7), pp. 971-980. [52] Kim, Y., Choi, Y., and Kang, S. N., 2005, Replication of high density optical disc using injection mold with MEMS heater, Microsyst. Technol., 11(7), pp. 464-469. [53] CHUNG, C.-S., 2007, Variable Mold Temperature Method and Study the Surface Quality of Product, master, National Central University, Jhongli, Taiwan. [54] Chen, F.-T., 2007, Development of a Steam Based Variotherm Molding System, master, National Cheng Kung University, Tainan,Taiwan. [55] Saito, T., Satoh, I., and Kurosaki, Y., 2002, A new concept of active temperature control for an injection molding process using infrared radiation heating, Polymer Engineering and Science, 42(12), pp. 2418-2429. [56] Chang, P.-C., and Hwang, S.-J., 2006, Experimental investigation of infrared rapid surface heating for injection molding, Journal of Applied Polymer Science, 102(4), pp. 3704-3713. [57] Yu, M. C., Young, W. B., and Hsu, P. M., 2007, Micro-injection molding with the infrared assisted mold heating system, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 460, pp. 288-295. [58] Liyong Yu, C. G. K. L. J. L. K. W. K. M. J. M., 2002, Experimental investigation and numerical simulation of injection molding with micro-features, Polymer Engineering & Science, 42(5), pp. 871-888. [59] Young, W. B., 2005, Simulation of the filling process in molding components with micro channels, Microsystem Technologies, 11(6), pp. 410-415. [60] Xu, B., Ooi, K. T., Wong, T. N., and Liu, C. Y., 1999, Study on the viscosity of the liquid flowing in microgeometry, Journal of Micromechanics and Microengineering(4), p. 377. [61] Li, C. S., Hung, C. F., and Shen, Y. K., 1994, Computer simulation and analysis of fountain flow in filling process of injection molding, Journal of Polymer Research, 1(2), pp. 163-173. [62] MacKnight, J. J. A. W. J., 1983, Intronduction to Polymer Visoelasticity, Wiley-Interscience. [63] Lin, C.-H., 2004, Applications of electron beam lithography to the fabrication of near-field mask, master, Tatung University, Taipei, Taiwan. [64] Hwu, M.-J., 2003, Electron Beam Lithography Technology for the Application of Deep Sub-micron Heterostructure Field-Effect Transistors, Doctor, National Central University, Jhongli City. [65] Guide to AFM techniques, http://www.spmtips.com/howto/mode. [66] Atomic Force Microscopy , http://www.mrsec.wisc.edu/Edetc/nanoquest/afm/index.html.
|