跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明修
研究生(外文):Shie, Ming-Shiou
論文名稱:釕金屬錯合物元件在碘液與溴液電解質中的電子轉移與染料再生動力學研究
論文名稱(外文):Kinetics of Electron Transfer and Dye Regeneration of Ruthenium-based TiO2 Solar Cells in Iodide and Bromide Electrolyte
指導教授:刁維光
指導教授(外文):Diau, Wei-Guang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:釕金屬錯合物染料再生動力學溴液電解質
外文關鍵詞:RutheniumDye RegenerationBromide Electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文將討論四個具有不同推拉電子基修飾之聯吡啶釕錯合物染料(Ru-1~Ru-4)作為染料敏化太陽能電池之敏化劑,藉由光致吸收光譜 (Photoinducted Absorption) 、瞬態吸收光譜 (Transient Absorption) 與瞬態光電壓/光電流衰減光譜 (Transient Photovoltage/ Photocurrent decay) 的量測來討論不同電解液環境對染料之電子傳遞速率以及電池效率的影響。由瞬態光電壓衰減結果可得知,在聯吡啶上修飾拉電子基之染料吸附於二氧化鈦時,會導致二氧化鈦半導體之費米能階下降,此結果可能是修飾拉電子基之染料吸附於二氧化鈦半導體上之分子偶極穩定二氧化鈦導帶上的電子。利用瞬態吸收光譜量測電解液與染料陽離子反應的再生生命期可以得知,其染料再生速率與短路電流值有相當的關聯性,且發現溴液電池之短路電流會較碘液電池之短路電流低,這是由於染料陽離子與 I3- 的反應速率比其與 Br3- 的反應速率大了約 10 倍,藉由 Marcus Theory 來模擬本實驗中所得到之染料陽離子與電解液反應的速率式關係,進而得知除了 Ru-3 與電解液的反應速率位於 normal-region 外,其他染料則位於inverted-region。此外我們也對於本實驗中最佳的染料 (Ru-1) 進行元件優化,其溴液電池的最佳光電轉換效率可達 5.09%,JSC 為 6.307 mA/cm-2、VOC 為 1.02V、FF 為 0.79。
Photo-induced Absorption (PIA), Transient Absorption decay measurements (TAD), Charge Extraction (CE) and transient Photovoltage decay measurement (TVD) were carried out to investigate the electron transfer kinetics and the photovoltaic performance of the four Ru-based dye-sensitized solar cell (DSSC) in iodide-based electrolyte or bromide-based electrolytes. With CE measurement, we observed a specific down shift of the conduction band edge of titanium dioxide sensitiged with the ruthenium complex containing the electron-withdrawing group on the bipyridine ligand. Is result indicated that the direction of dipole moment of the Ru complexes modified with electron-withdrawing group favors better interaction with the conduction band electrons than the others. The regeneration rate of dye cations obtained by the TAD measurement using were much slower with Br3- than with I3-, consistent with the trend of photocurrents of the devices. We found that the regeneration rate constant of the Ru-3 device was located on the Marcus normal-region, but the others were on the Marcus inverted-region. The DSSC using Ru-1 as a sensitizer and 3Br-/Br3- as electrolyte exhibited the best performance with overall power conversion efficiency 5.09 % with a short-circuit current density (JSC) 6.307 mAcm-2, an open-circuit voltage (VOC) 1.02 V, and a fill factor of 0.79. The VOC value of 3Br-/Br3- (1.02 V)was significantly greater than that of 3I-/I3- (0.655 V) due to the more positive Fermi level of 3Br-/Br3- Than that of 3I-/I3-.
目錄
中文摘要 i
Abstract ii
誌謝 iv
目錄 vi
表目錄 viii
圖目錄 ix
附錄圖目錄 xii
第一章 緒論 1
1-1. 染料敏化太陽能電池的介紹 1
1-2. 聯吡啶釕錯合物簡介 4
1-2.1. 軌域與電子的轉移 4
1-2-2. 調變吸收光譜及氧化還原特性 6
1-2-3. 激發態的時間尺度 9
1-3. 馬克思理論 (Marcus Theory) 11
1-4. 實驗研究目的 14
第二章 實驗儀器與步驟 16
2-1. 紫外光-可見光吸收光譜 (UV-Vis Absorption Spectroscopy): 16
2-2. 螢光發射光譜(Fluorescence spectroscopy): 16
2-3. I-V量測系統 18
2-4. 入射光子-光電流轉換效率量測系統 (Incident Photon-to-current Conversion Efficiency, IPCE) 20
2-5. 瞬態光電量測系統 (Transient photoelectric measurements) 22
2-6. 光誘導吸收與瞬態吸收衰變光譜 (Photoinduced Absorption and Transient Absorption Decay Spectroscopy) 27
2-6-1. 光誘導吸收光譜(PIA)架設 28
2-6-2. 瞬態吸收衰變(TA decay)架設 28
2-7. 染料敏化太陽能電池的製備 29
2-7-1. 多孔性二氧化鈦陽極製備 29
2-7-2. 陰極製備方法 29
2-7-3. 電解液製備方法 30
2-7-4. 染料敏化太陽能電池之封裝 30
第三章 釕金屬錯合物元件在碘液與溴液電解質中的電子轉移與染料再生動力學研究 31
3-1. 穩態吸收光譜與螢光放光光譜 31
3-2. 聯吡啶釕錯合物之氧化還原電位 35
3-3. 聯吡啶釕錯合物於碘電解液之 I-V 曲線與 IPCE 量測 37
3-4. 聯吡啶釕錯合物於碘電解液下之瞬態光電壓光電流與電荷萃取之量測 39
3-5. 聯吡啶釕錯合物於碘電解液下之氧化還原電解液回饋至染料再生生命期量測 44
3-6. 聯吡啶釕錯合物於溴電解液之 I-V 曲線與 IPCE 量測 55
3-7. 聯吡啶釕錯合物於溴電解液下之瞬態光電壓光電流與電荷萃取之量測 58
3-8. 聯吡啶釕錯合物於溴電解液下之氧化還原電解液回饋至染料再生生命期量測 60
3-9. 聯吡啶釕錯合物於溴電解液下之效率優化 63
3-10. 結果整理 65
第四章 結論 68
參考文獻 70
附錄 77

參考文獻
1. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737–740.
2. O’Regan, B.; Grätzel, M.; J.; Serpone, N.; Sharma, D.K. J. Am. Chem. Soc. 1985, 107, 8054.
3. Martinson, A.B.F.; Hamann, T.W.; Pellin, M. J. and Hupp J.T. Chem. Eur. J. 2008, 14, 4458.
4. Grätzel, M, Inorg. Chem, 2005, 44, 6841.
5. J. P. Paris and W. W. Brandt, J. Am. Chem. Soc., 1959, 81,5001–5002.
6. F. E. Lytle and D. M. Hercules, J. Am. Chem. Soc., 1969, 91, 253–257.
7. F. Felix, J. Ferguson, H. U. Guedel and A. Ludi, J. Am. Chem. Soc., 1980, 102, 4096–4102.
8. G. A. Crosby, K. W. Hipps and W. H. Elfring, J. Am. Chem. Soc.,1974, 96, 629–630.
9. E. U. Condon, Phys. Rev., 1928, 32, 858–872.
10. E. Condon, Phys. Rev., 1926, 28, 1182–1201.
11. J. Franck and E. G. Dymond, Trans. Faraday Soc., 1926, 21, 536–542.
12. S. Wallin, J. Davidsson, J. Modin and L. Hammarstrom, J. Phys. Chem. A, 2005, 109, 4697–4704.
13. A. T. Yeh, C. V. Shank and J. K. McCusker, Science, 2000, 289, 935–938.
14. E. M. Kober, B. P. Sullivan and T. J. Meyer, Inorg. Chem., 1984, 23, 2098–2104.
15. R. F. Dallinger and W. H. Woodruff, J. Am. Chem. Soc., 1979, 101, 4391–4393.
16. D. H. Oh and S. G. Boxer, J. Am. Chem. Soc., 1989, 111, 1130–1131.
17. F. Alary, J. L. Heully, L. Bijeire and P. Vicendo, Inorg. Chem., 2007, 46, 3154–3165.
18. C. J. Timpson, C. A. Bignozzi, B. P. Sullivan, E. M. Kober and T. J. Meyer, J. Phys. Chem., 1996, 100, 2915–2925.
19. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M., J. Am. Chem. Soc., 1993, 115, 6382–6390.
20. P. Persson, R. Bergstro‥ m, L. Ojama‥ e and S. Lunell, Quantum-Chemical Studies of Metal Oxides for Photoelectrochemical Applications, Adv. Quantum Chem., 2002, 41, 203–263.
21. H. Rensmo, S. Lunell and H. Siegbahn, J. Photochem. Photobiol. A: Chem., 1998, 114, 117–124.
22. H. Rensmo, S. Södergren, L. Patthey, K. Westermark,L. Vayssieres, O. Kohle, P. A. Brühwiler, A. Hagfeldt and H. Siegbahn, Chem. Phys. Lett., 1997, 274, 51–57.
23. A. J. Bard, G. M. Whitesides, R. N. Zare and F. W. McLafferty, Acc. Chem. Res., 1995, 28, 91–91.
24. A. J. Bard and M. A. Fox, Acc. Chem. Res., 1995, 28, 141–145.M. K. Nazeeruddin, P. Pe’chy and M. Grätzel, Chem. Commun., 1997, 1705–1706.
25. M. K. Nazeeruddin, P. Pe’chy and M. Grätzel, Chem. Commun., 1997, 1705–1706.69 C. R. Bock, J.
26. C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K. Nagle, J. Am. Chem. Soc., 1979, 101, 4815–4824.
27. C. R. Bock, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 1975, 97, 2909–2911.
28. P. Bonhote, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos, F. Lenzmann, P. Comte and M. Gra‥ tzel, J. Phys. Chem. B, 1998,102, 1498–1507.
29. T. A. Heimer, S. T. D’Arcangelis, F. Farzad, J. M. Stipkala and G. J. Meyer, Inorg. Chem., 1996, 35, 5319–5324.
30. S. A. Trammell and T. J.Meyer, J. Phys. Chem. B, 1999, 103, 104–107.
31. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259–271.
32. G. M. Hasselman, D. F. Watson, J. R. Stromberg, D. F. Bocian, D. Holten, J. S. Lindsey and G. J. Meyer, J. Phys. Chem. B, 2006, 110, 25430–25440.
33. P. Wang, C. Klein, R. Humphy-Baker, S. M. Zakeeruddin and M. Grätzel, Appl. Phys. Lett., 2005, 86, 123508–123510.
34. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 808–809.
35. D. Kuang, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2006, 128, 4146–4154.
36. A. Staniszewski, W. B. Heuer and G. J. Meyer, Inorg. Chem., 2008, 47, 7062–7064.
37. H. J. Snaith, C. S. Karthikeyan, A. Petrozza, J. Teuscher, J. E. Moser, M. K. Nazeeruddin, M. Thelakkat and M. Grätzel, J. Phys. Chem. C, 2008, 112, 7562–7566.
38. V. Aranyos, J. Hjelm, A. Hagfeldt and H. Grennberg, J. Chem. Soc., Dalton Trans., 2001, 1319–1325.
39. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Adv. Mater., 2004, 16, 1806–1811.
40. S. R. Jang, C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal and K. J. Kim, Chem. Mater., 2006, 18, 5604–5608.
41. Y. j. Hou, P. h. Xie, B. w. Zhang, Y. Cao, X. r. Xiao and W. b. Wang, Inorg. Chem., 1999, 38, 6320–6322.
42. F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry- Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Chem. Commun., 2008, 2635–2637.
43. V. Balzani, L. Moggi and F. Scandola, in: Towards a Supramolecular Photochemistry: Assembly of Molecular Components to Obtain Photochemical Molecular Devices, ed. V. Balzani, Dordrecht, Holland, 1987.
44. C. A. Bignozzi, R. Argazzi, M. T. Indelli and F. Scandola, Sol. Energy Mater., 1994, 32, 229–244.
45. C. A. Bignozzi, R. Argazzi, F. Scandola, J. R. Schoonover and G. J. Meyer, Sol. Energy Mater., 1995, 38, 187–198.
46. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, J. Am. Chem. Soc., 1990, 112, 7099–7103.
47. M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos and M. Grätzel, Helv. Chim. Acta, 1990, 73, 1788–1803.
48. D. Holten, D. F. Bocian and J. S. Lindsey, Acc. Chem. Res., 2002, 35, 57–69.
49. R. J. Forster, T. E. Keyes and J. G. Vos, Interfacial Supramolecular Assemblies, John Wiley &; Sons Ltd., 2003.
50. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, J. Am. Chem. Soc., 1990, 112, 7099–7103.
51. F. Gajardo, A. M. Leiva, B. Loeb, A. Delgadillo, J. R. Stromberg and G. J. Meyer, Inorg. Chim. Acta, 2008, 361, 613–619.
52. J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853–4858.
53. W. Siebrand, J. Chem. Phys., 1966, 44, 4055–4057.
54. R. Englman and J. Jortner, Mol. Phys., 1970, 18, 145–164.
55. K. F. Freed and J. Jortner, J. Chem. Phys., 1970, 52, 6272–6291.
56. M. Bixon and J. Jortner, J. Chem. Phys., 1968, 48, 715–726.
57. G. W. Robinson and R. P. Frosch, J. Chem. Phys., 1963, 38, 1187–1203.
58. N. A. Anderson and T. Lian, Coord. Chem. Rev., 2004, 248, 1231–1246.
59. J. B. Asbury, N. A. Anderson, E. Hao, X. Ai and T. Lian, J. Phys. Chem. B, 2003, 107, 7376–7386.
60. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh and T. Lian, J. Phys. Chem. B, 2001, 105, 4545–4557.
61. J. B. Asbury, E. Hao, Y. Wang and T. Lian, J. Phys. Chem. B, 2000, 104, 11957–11964.
62. J. B. Asbury, Y.-Q. Wang, E. Hao, H. N. Ghosh and T. Lian, Res. Chem. Intermed., 2001, 27, 393–406.
63. G. Benkö , J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundströ m, J. Am. Chem. Soc., 2002, 124, 489–493.
64. R. Ernstorfer, L. Gundlach, S. Felber, W. Storck, R. Eichberger and F. Willig, J. Phys. Chem. B, 2006, 110, 25383–25391.
65. T. Hannappel, B. Burfeindt, W. Storck and F. Willig, J. Phys. Chem. B, 1997, 101, 6799–6802.
66. J. Kallioinen, G. Benkö , P. Myllyperkiö , L. Khriachtchev, B. Skarman, R. Wallenberg, M. Tuomikoski, J. Korppi-Tommola, V. Sundstro‥m and A. P. Yartsev, J. Phys. Chem. B, 2004, 108, 6365–6373.
67. J. Kallioinen, G. Benkö , V. Sundströ m, J. E. I. Korppi-Tommola and A. P. Yartsev, J. Phys. Chem. B, 2002, 106, 4396–4404.
68. D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis and J. K. McCusker, J. Phys. Chem. B, 2002, 106, 9347–9358.
69. A. Morandeira, G. Boschloo, A. Hagfeldt and L. Hammarstro‥ m, J. Phys. Chem. B, 2005, 109, 19403–19410.
70. P. Myllyperkiö , G. Benkö, J. Korppi-Tommola, A. P. Yartsev and V. Sundströ m, Phys. Chem. Chem. Phys., 2008, 10, 996–1002.
71. K. Schwarzburg, R. Ernstorfer, S. Felber and F. Willig, Coord. Chem. Rev., 2004, 248, 1259–1270.
72. C. She, J. Guo, S. Irle, K. Morokuma, D. L. Mohler, H. Zabri, F. Odobel, K. T. Youm, F. Liu, J. T. Hupp and T. Lian, J. Phys. Chem. A, 2007, 111, 6832–6842.
73. Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant and D. R. Klug, J. Phys. Chem. B, 2000, 104, 1198–1205.
74. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R. Durrant, J. Phys. Chem., 1996, 100, 20056–20062.
75. D. F. Watson and G. J. Meyer, Annu. Rev. Phys. Chem., 2005, 56, 119–156.
76. M. A. Webb, F. J. Knorr and J. L. McHale, J. Raman Spectrosc., 2001, 32, 481–485.
77. L. F. Cooley, P. Bergquist and D. F. Kelley, J. Am. Chem. Soc., 1990, 112, 2612–2617.
78. A. Malone and D. F. Kelley, J. Chem. Phys., 1991, 95, 8970–8976.
79. A. C. Bhasikuttan, M. Suzuki, S. Nakashima and T. Okada, J. Am. Chem. Soc., 2002, 124, 8398–8405.
80. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, J. Am. Chem. Soc., 2006, 128, 9996–9997.
81. S. Yoon, P. Kukura, C.M. Stuart and R. A. Mathies, Mol. Phys., 2006, 104, 1275–1282.
82. W. Henry, C. G. Coates, C. Brady, K. L. Ronayne, P. Matousek, M. Towrie, S. W. Botchway, A. W. Parker, J. G. Vos, W. R. Browne and J. J. McGarvey, J. Phys. Chem. A, 2008, 112, 4537–4544.
83. Lu-Lin Li , Yu-Cheng Chang , Hui-Ping Wu , Eric Wei-Guang Diau. Int. Rev. Phys. Chem. 2012, 31, 420-467.
84. Winkler, K.; McKnight, N.; Fawcett, w. R. J. Phys. Chem. B. 2000, 104, 3575.
85. 許宏裕, 國立台灣師範大學化學系研究所碩士論文, 2009 年.
86. Cook, M. J.; Lewis, A. P.; McAuliffe, G. S. G.; Skarda, V.; Thomson, A. J. J. Chem. Soc. Perkin Trans. II 1984, 1293.
87. Nazeeruddin, M. K.; Liska, P.; Moser, J.; Vlachopoulos, N.; Grätzel, M. Helvetica Chimica Acta 1990, 73, 1788.
88. Conan, F.; Gall, B. L.; Kerbaol, J. M.; Stang, S.L.; Sala-Pala, J.; Mest, Y. L.; Bacsa, J.; Ouyang, X.; Dunbar, K. R.; Campana, C. F. Inorg. Chem. 2004, 43, 3673.
89. Filippo De Angelis, Simona Fantacci, Annabella Selloni, Michael Grätzel, and Mohammed K. Nazeeruddin, Nano. Latters, 2007, 7, 3189-3195.
90. Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.;Durrant, J. R. J. Phys. Chem. C 2007, 111, 6561.
91. Wikipedia, Marcus Theory. Figure 2.
92. Chao Teng, Xichuan Yang, Chunze Yuan, Chaoyan Li, Ruikui Chen, Haining Tian, Shifeng Li, Anders Hagfeldt and Licheng Sun. Org. Lett., 2009, 11, pp 5542–5545.
93. Sandra M. Feldt, Gang Wang, Gerrit Boschloo,* and Anders Hagfeldt. J. Phys. Chem. C. 2011, 115, 21500–21507
94. Sandra M. Feldt, Peter W. Lohse, Florian Kessler, Mohammed K. Nazeeruddin,Michael Grätzel, Gerrit Boschloo and Anders Hagfeldta. Phys.Chem. Chem. Phys., 2013, 15, 7087
95. Ute B. Cappel, Stefan Plogmaker, Erik M. J. Johansson, Anders Hagfeldt, Gerrit Boschlooa and Hakan Rensmo. Phys. Chem. Chem. Phys., 2011, 13, 14767–14774

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top