|
參考文獻 1. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737–740. 2. O’Regan, B.; Grätzel, M.; J.; Serpone, N.; Sharma, D.K. J. Am. Chem. Soc. 1985, 107, 8054. 3. Martinson, A.B.F.; Hamann, T.W.; Pellin, M. J. and Hupp J.T. Chem. Eur. J. 2008, 14, 4458. 4. Grätzel, M, Inorg. Chem, 2005, 44, 6841. 5. J. P. Paris and W. W. Brandt, J. Am. Chem. Soc., 1959, 81,5001–5002. 6. F. E. Lytle and D. M. Hercules, J. Am. Chem. Soc., 1969, 91, 253–257. 7. F. Felix, J. Ferguson, H. U. Guedel and A. Ludi, J. Am. Chem. Soc., 1980, 102, 4096–4102. 8. G. A. Crosby, K. W. Hipps and W. H. Elfring, J. Am. Chem. Soc.,1974, 96, 629–630. 9. E. U. Condon, Phys. Rev., 1928, 32, 858–872. 10. E. Condon, Phys. Rev., 1926, 28, 1182–1201. 11. J. Franck and E. G. Dymond, Trans. Faraday Soc., 1926, 21, 536–542. 12. S. Wallin, J. Davidsson, J. Modin and L. Hammarstrom, J. Phys. Chem. A, 2005, 109, 4697–4704. 13. A. T. Yeh, C. V. Shank and J. K. McCusker, Science, 2000, 289, 935–938. 14. E. M. Kober, B. P. Sullivan and T. J. Meyer, Inorg. Chem., 1984, 23, 2098–2104. 15. R. F. Dallinger and W. H. Woodruff, J. Am. Chem. Soc., 1979, 101, 4391–4393. 16. D. H. Oh and S. G. Boxer, J. Am. Chem. Soc., 1989, 111, 1130–1131. 17. F. Alary, J. L. Heully, L. Bijeire and P. Vicendo, Inorg. Chem., 2007, 46, 3154–3165. 18. C. J. Timpson, C. A. Bignozzi, B. P. Sullivan, E. M. Kober and T. J. Meyer, J. Phys. Chem., 1996, 100, 2915–2925. 19. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M., J. Am. Chem. Soc., 1993, 115, 6382–6390. 20. P. Persson, R. Bergstro‥ m, L. Ojama‥ e and S. Lunell, Quantum-Chemical Studies of Metal Oxides for Photoelectrochemical Applications, Adv. Quantum Chem., 2002, 41, 203–263. 21. H. Rensmo, S. Lunell and H. Siegbahn, J. Photochem. Photobiol. A: Chem., 1998, 114, 117–124. 22. H. Rensmo, S. Södergren, L. Patthey, K. Westermark,L. Vayssieres, O. Kohle, P. A. Brühwiler, A. Hagfeldt and H. Siegbahn, Chem. Phys. Lett., 1997, 274, 51–57. 23. A. J. Bard, G. M. Whitesides, R. N. Zare and F. W. McLafferty, Acc. Chem. Res., 1995, 28, 91–91. 24. A. J. Bard and M. A. Fox, Acc. Chem. Res., 1995, 28, 141–145.M. K. Nazeeruddin, P. Pe’chy and M. Grätzel, Chem. Commun., 1997, 1705–1706. 25. M. K. Nazeeruddin, P. Pe’chy and M. Grätzel, Chem. Commun., 1997, 1705–1706.69 C. R. Bock, J. 26. C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K. Nagle, J. Am. Chem. Soc., 1979, 101, 4815–4824. 27. C. R. Bock, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 1975, 97, 2909–2911. 28. P. Bonhote, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos, F. Lenzmann, P. Comte and M. Gra‥ tzel, J. Phys. Chem. B, 1998,102, 1498–1507. 29. T. A. Heimer, S. T. D’Arcangelis, F. Farzad, J. M. Stipkala and G. J. Meyer, Inorg. Chem., 1996, 35, 5319–5324. 30. S. A. Trammell and T. J.Meyer, J. Phys. Chem. B, 1999, 103, 104–107. 31. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259–271. 32. G. M. Hasselman, D. F. Watson, J. R. Stromberg, D. F. Bocian, D. Holten, J. S. Lindsey and G. J. Meyer, J. Phys. Chem. B, 2006, 110, 25430–25440. 33. P. Wang, C. Klein, R. Humphy-Baker, S. M. Zakeeruddin and M. Grätzel, Appl. Phys. Lett., 2005, 86, 123508–123510. 34. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 808–809. 35. D. Kuang, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2006, 128, 4146–4154. 36. A. Staniszewski, W. B. Heuer and G. J. Meyer, Inorg. Chem., 2008, 47, 7062–7064. 37. H. J. Snaith, C. S. Karthikeyan, A. Petrozza, J. Teuscher, J. E. Moser, M. K. Nazeeruddin, M. Thelakkat and M. Grätzel, J. Phys. Chem. C, 2008, 112, 7562–7566. 38. V. Aranyos, J. Hjelm, A. Hagfeldt and H. Grennberg, J. Chem. Soc., Dalton Trans., 2001, 1319–1325. 39. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Adv. Mater., 2004, 16, 1806–1811. 40. S. R. Jang, C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal and K. J. Kim, Chem. Mater., 2006, 18, 5604–5608. 41. Y. j. Hou, P. h. Xie, B. w. Zhang, Y. Cao, X. r. Xiao and W. b. Wang, Inorg. Chem., 1999, 38, 6320–6322. 42. F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry- Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Chem. Commun., 2008, 2635–2637. 43. V. Balzani, L. Moggi and F. Scandola, in: Towards a Supramolecular Photochemistry: Assembly of Molecular Components to Obtain Photochemical Molecular Devices, ed. V. Balzani, Dordrecht, Holland, 1987. 44. C. A. Bignozzi, R. Argazzi, M. T. Indelli and F. Scandola, Sol. Energy Mater., 1994, 32, 229–244. 45. C. A. Bignozzi, R. Argazzi, F. Scandola, J. R. Schoonover and G. J. Meyer, Sol. Energy Mater., 1995, 38, 187–198. 46. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, J. Am. Chem. Soc., 1990, 112, 7099–7103. 47. M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos and M. Grätzel, Helv. Chim. Acta, 1990, 73, 1788–1803. 48. D. Holten, D. F. Bocian and J. S. Lindsey, Acc. Chem. Res., 2002, 35, 57–69. 49. R. J. Forster, T. E. Keyes and J. G. Vos, Interfacial Supramolecular Assemblies, John Wiley &; Sons Ltd., 2003. 50. R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, J. Am. Chem. Soc., 1990, 112, 7099–7103. 51. F. Gajardo, A. M. Leiva, B. Loeb, A. Delgadillo, J. R. Stromberg and G. J. Meyer, Inorg. Chim. Acta, 2008, 361, 613–619. 52. J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853–4858. 53. W. Siebrand, J. Chem. Phys., 1966, 44, 4055–4057. 54. R. Englman and J. Jortner, Mol. Phys., 1970, 18, 145–164. 55. K. F. Freed and J. Jortner, J. Chem. Phys., 1970, 52, 6272–6291. 56. M. Bixon and J. Jortner, J. Chem. Phys., 1968, 48, 715–726. 57. G. W. Robinson and R. P. Frosch, J. Chem. Phys., 1963, 38, 1187–1203. 58. N. A. Anderson and T. Lian, Coord. Chem. Rev., 2004, 248, 1231–1246. 59. J. B. Asbury, N. A. Anderson, E. Hao, X. Ai and T. Lian, J. Phys. Chem. B, 2003, 107, 7376–7386. 60. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh and T. Lian, J. Phys. Chem. B, 2001, 105, 4545–4557. 61. J. B. Asbury, E. Hao, Y. Wang and T. Lian, J. Phys. Chem. B, 2000, 104, 11957–11964. 62. J. B. Asbury, Y.-Q. Wang, E. Hao, H. N. Ghosh and T. Lian, Res. Chem. Intermed., 2001, 27, 393–406. 63. G. Benkö , J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundströ m, J. Am. Chem. Soc., 2002, 124, 489–493. 64. R. Ernstorfer, L. Gundlach, S. Felber, W. Storck, R. Eichberger and F. Willig, J. Phys. Chem. B, 2006, 110, 25383–25391. 65. T. Hannappel, B. Burfeindt, W. Storck and F. Willig, J. Phys. Chem. B, 1997, 101, 6799–6802. 66. J. Kallioinen, G. Benkö , P. Myllyperkiö , L. Khriachtchev, B. Skarman, R. Wallenberg, M. Tuomikoski, J. Korppi-Tommola, V. Sundstro‥m and A. P. Yartsev, J. Phys. Chem. B, 2004, 108, 6365–6373. 67. J. Kallioinen, G. Benkö , V. Sundströ m, J. E. I. Korppi-Tommola and A. P. Yartsev, J. Phys. Chem. B, 2002, 106, 4396–4404. 68. D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis and J. K. McCusker, J. Phys. Chem. B, 2002, 106, 9347–9358. 69. A. Morandeira, G. Boschloo, A. Hagfeldt and L. Hammarstro‥ m, J. Phys. Chem. B, 2005, 109, 19403–19410. 70. P. Myllyperkiö , G. Benkö, J. Korppi-Tommola, A. P. Yartsev and V. Sundströ m, Phys. Chem. Chem. Phys., 2008, 10, 996–1002. 71. K. Schwarzburg, R. Ernstorfer, S. Felber and F. Willig, Coord. Chem. Rev., 2004, 248, 1259–1270. 72. C. She, J. Guo, S. Irle, K. Morokuma, D. L. Mohler, H. Zabri, F. Odobel, K. T. Youm, F. Liu, J. T. Hupp and T. Lian, J. Phys. Chem. A, 2007, 111, 6832–6842. 73. Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant and D. R. Klug, J. Phys. Chem. B, 2000, 104, 1198–1205. 74. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R. Durrant, J. Phys. Chem., 1996, 100, 20056–20062. 75. D. F. Watson and G. J. Meyer, Annu. Rev. Phys. Chem., 2005, 56, 119–156. 76. M. A. Webb, F. J. Knorr and J. L. McHale, J. Raman Spectrosc., 2001, 32, 481–485. 77. L. F. Cooley, P. Bergquist and D. F. Kelley, J. Am. Chem. Soc., 1990, 112, 2612–2617. 78. A. Malone and D. F. Kelley, J. Chem. Phys., 1991, 95, 8970–8976. 79. A. C. Bhasikuttan, M. Suzuki, S. Nakashima and T. Okada, J. Am. Chem. Soc., 2002, 124, 8398–8405. 80. S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, J. Am. Chem. Soc., 2006, 128, 9996–9997. 81. S. Yoon, P. Kukura, C.M. Stuart and R. A. Mathies, Mol. Phys., 2006, 104, 1275–1282. 82. W. Henry, C. G. Coates, C. Brady, K. L. Ronayne, P. Matousek, M. Towrie, S. W. Botchway, A. W. Parker, J. G. Vos, W. R. Browne and J. J. McGarvey, J. Phys. Chem. A, 2008, 112, 4537–4544. 83. Lu-Lin Li , Yu-Cheng Chang , Hui-Ping Wu , Eric Wei-Guang Diau. Int. Rev. Phys. Chem. 2012, 31, 420-467. 84. Winkler, K.; McKnight, N.; Fawcett, w. R. J. Phys. Chem. B. 2000, 104, 3575. 85. 許宏裕, 國立台灣師範大學化學系研究所碩士論文, 2009 年. 86. Cook, M. J.; Lewis, A. P.; McAuliffe, G. S. G.; Skarda, V.; Thomson, A. J. J. Chem. Soc. Perkin Trans. II 1984, 1293. 87. Nazeeruddin, M. K.; Liska, P.; Moser, J.; Vlachopoulos, N.; Grätzel, M. Helvetica Chimica Acta 1990, 73, 1788. 88. Conan, F.; Gall, B. L.; Kerbaol, J. M.; Stang, S.L.; Sala-Pala, J.; Mest, Y. L.; Bacsa, J.; Ouyang, X.; Dunbar, K. R.; Campana, C. F. Inorg. Chem. 2004, 43, 3673. 89. Filippo De Angelis, Simona Fantacci, Annabella Selloni, Michael Grätzel, and Mohammed K. Nazeeruddin, Nano. Latters, 2007, 7, 3189-3195. 90. Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.;Durrant, J. R. J. Phys. Chem. C 2007, 111, 6561. 91. Wikipedia, Marcus Theory. Figure 2. 92. Chao Teng, Xichuan Yang, Chunze Yuan, Chaoyan Li, Ruikui Chen, Haining Tian, Shifeng Li, Anders Hagfeldt and Licheng Sun. Org. Lett., 2009, 11, pp 5542–5545. 93. Sandra M. Feldt, Gang Wang, Gerrit Boschloo,* and Anders Hagfeldt. J. Phys. Chem. C. 2011, 115, 21500–21507 94. Sandra M. Feldt, Peter W. Lohse, Florian Kessler, Mohammed K. Nazeeruddin,Michael Grätzel, Gerrit Boschloo and Anders Hagfeldta. Phys.Chem. Chem. Phys., 2013, 15, 7087 95. Ute B. Cappel, Stefan Plogmaker, Erik M. J. Johansson, Anders Hagfeldt, Gerrit Boschlooa and Hakan Rensmo. Phys. Chem. Chem. Phys., 2011, 13, 14767–14774
|