|
1. Leibfarth, F.A., et al., A facile route to ketene-functionalized polymers for general materials applications. Nat Chem, 2010. 2(3): p. 207-212. 2. González, L., et al., Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione). Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(23): p. 6869-6879. 3. Fillion, E., et al., Meldrum's acids as acylating agents in the catalytic intramolecular friedel−crafts reaction. The Journal of Organic Chemistry, 2005. 70(4): p. 1316-1327. 4. Wolffs, M., M.J. Kade, and C.J. Hawker, An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011. 47(38): p. 10572-10574. 5. Wu, C.-Y., et al., Liberation of small molecules in polyimide membrane formation: An effect on gas separation properties. Journal of Membrane Science, 2016. 499: p. 20-27. 6. Cheawchan, S., et al., Thermotriggered catalyst-free modification of a glass surface with an orthogonal agent possessing nitrile n-oxide and masked ketene functions. Langmuir, 2016. 32(1): p. 309-315. 7. Jankovic, N., et al., Solvent-free synthesis of novel vanillidene derivatives of meldrum's acid: biological evaluation, DNA and BSA binding study. RSC Advances, 2016. 6(45): p. 39452-39459. 8. Wu, J., et al., Utilization of a meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications, 2015. 51(44): p. 9220-9222. 9. Leibfarth, F.A., et al., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012. 3(3): p. 766-771. 10. Meldrum, A.N., LIV.-A [small beta]-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions, 1908. 93(0): p. 598-601. 11. Davidson, D. and S.A. Bernhard, The structure of meldrum's supposed β-lactonic acid. Journal of the American Chemical Society, 1948. 70(10): p. 3426-3428. 12. Arnett, E.M. and J.A. Harrelson, Ion pairing and reactivity of enolate anions. 7. A spectacular example of the importance of rotational barriers: the ionization of Meldrum's acid. Journal of the American Chemical Society, 1987. 109(3): p. 809-812. 13. Pihlaja, K. and M. Seilo, The acidity and general base-catalyzed hydrolysis of meldrum’s acid and Its methyl derivatives. Acta Chem. Scand, 1969. 23(0): p. 9. 14. McNab, H., Meldrum's acid. Chemical Society Reviews, 1978. 7(3): p. 345-358. 15. Staudinger, H., Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft, 1905. 38(2): p. 1735-1739. 16. Tidwell, T.T., Ketene chemistry after 100 years: ready for a new century. European journal of organic chemistry, 2006. 2006(3): p. 563-576. 17. Nagai, D., A. Sudo, and T. Endo, Anionic alternating copolymerization of ketene and aldehyde: control of enantioselectivity by bisoxazoline-type ligand for synthesis of optically active polyesters. Macromolecules, 2006. 39(26): p. 8898-8900. 18. Goodwin, A.P., et al., Synthetic micelle sensitive to ir light via a two-photon process. Journal of the American Chemical Society, 2005. 127(28): p. 9952-9953. 19. Kumbaraci, V., N. Talinli, and Y. Yagci, Photoinduced crosslinking of polymers containing pendant hydroxyl groups by using bisbenzodioxinones. Macromolecular Rapid Communications, 2007. 28(1): p. 72-77. 20. Thirupathi, G., et al., Eco-friendly synthesis and antimicrobial activities of substituted-5-(1H-indol-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione derivatives. Medicinal Chemistry Research, 2014. 23(3): p. 1569-1580. 21. Shinde, S., et al., Facile knoevenagel and domino knoevenagel/michael reactions using gel-entrapped base catalysts. Helvetica Chimica Acta, 2011. 94(11): p. 1943-1951. 22. Dumas, A.M., et al., A general and practical preparation of alkylidene Meldrum’s acids. Tetrahedron Letters, 2007. 48(40): p. 7072-7074. 23. Song, A., X. Wang, and K.S. Lam, A convenient synthesis of coumarin-3-carboxylic acids via knoevenagel condensation of Meldrum's acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Letters, 2003. 44(9): p. 1755-1758. 24. Leibfarth, F.A., et al., Ketene functionalized polyethylene: control of cross-link density and material properties. Journal of the American Chemical Society, 2010. 132(42): p. 14706-14709. 25. Tasdelen, M.A., et al., Photoinduced cross-linking polymerization of monofunctional vinyl monomer without conventional photoinitiator and cross-linker. Macromolecules, 2007. 40(13): p. 4406-4408. 26. Durmaz, Y.Y., et al., Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules, 2009. 42(11): p. 3743-3749. 27. Fillion, E. and D. Fishlock,Scandium triflate-catalyzed intramolecular Friedel–Crafts acylation with Meldrum's acids: insight into the mechanism. Tetrahedron, 2009. 65(33): p. 6682-6695. 28. Holly, F.W. and A.C. Cope, Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. Journal of the American Chemical Society, 1944. 66(11): p. 1875-1879. 29. Burke, W.J., 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,N-Dimethylolamines. Journal of the American Chemical Society, 1949. 71(2): p. 609-612. 30. Dunkers, J. and H. Ishida, Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. Journal of Polymer Science Part A Polymer Chemistry, 1999. 37(13): p. 1913-1921. 31. Wang, Y.X. and H. Ishida, Cationic ring-opening polymerization of benzoxazines. Polymer, 1999. 40(16): p. 4563-4570. 32. Sun, J., et al., A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Advances, 2015. 5(25): p. 19048-19057. 33. Kimura, H., et al., New thermosetting resin from terpenediphenol-based benzoxazine and epoxy resin. Journal of Applied Polymer Science, 1999. 74(9): p. 2266-2273. 34. Chou, C.-I. and Y.-L. Liu, High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(19): p. 6509-6517. 35. Liu, Y.-L., C.-Y. Hsieh, and Y.-W. Chen, Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer, 2006. 47(8): p. 2581-2586. 36. Liu, Y.-L. and Y.-W. Chen,Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics, 2007. 208(2): p. 224-232. 37. Watanabe, M. and N. Yoshie, Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer, 2006. 47(14): p. 4946-4952. 38. Xu, Z., et al., A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on Diels-Alder chemistry. Chemical Communications, 2013. 49(60): p. 6755-6757. 39. Durmaz, H., et al., Preparation of block copolymers via Diels Alder reaction of maleimide- and anthracene-end functionalized polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(5): p. 1667-1675. 40. Wan, L., et al., Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture. RSC Advances, 2015. 5(7): p. 5331-5342. 41. Lin, L.-K., et al., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications, 2015. 51(64): p. 12760-12763. 42. Kai, Y., 含有米氏酸結構的可交聯高分子之合成與其熱固化樹脂之性質研究. 清華大學化學工程學系學位論文, 2015: p. 1-91. 43. Liu, Y.-L. and C.-I. Chou, High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(21): p. 5267-5282.
|