跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2025/11/27 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張品宸
研究生(外文):Pin-Cheng Chang
論文名稱:前臭氧結合混凝對三鹵甲烷生成前質去除研究
論文名稱(外文):Effects of Pre-Ozonation on the Removal of THMs Precursors by Coagulation
指導教授:蔣本基蔣本基引用關係
指導教授(外文):Pen-Chi Chiang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:160
中文關鍵詞:前臭氧加強混凝天然有機物親水性疏水性三鹵甲烷
外文關鍵詞:Pre-ozonationEnhanced coagulationNatural organic matter (NOM)HydrophilicHydrophobicTrihalomethanes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因金門太湖原水中高溶解性有機碳(DOC)、低濁度(Turbidity)與低鹼度(Alkalinity)的特性,水中有機物質不易經由傳統處理程序去除。然而,根據消毒劑/消毒副產物規則(D/DBP Rule),導入加強混凝程序後,其三鹵甲烷生成潛能仍高於水質標準。因此,本研究將利用不同條件的前臭氧結合混凝來去除太湖原水之天然有機物,以及降低其三鹵甲烷生成潛能(THMFP),並針對天然有機物(NOMs)的特性,將原水分成親水性和疏水性進行實驗;探討前臭氧的劑量和pH值對於加強混凝過程中有機物去除效能的影響,並建立天然水中溶解性有機碳(DOC)的混凝去除預測模式。
研究結果顯示,前臭氧劑量和pH值均會影響混凝效果。當操作條件為pH 9且前臭氧劑量為0.45 mg O3/mg DOC時為最佳操作條件,其三鹵甲烷生成潛勢減少約60%。此外,DAX-8樹脂分離實驗結果顯示,疏水性與親水性有機物之三鹵甲烷比生成潛勢(Specific THMFP)分別為57.3與98.7 ugTHMFP/mgDOC。因此,親水性有機物為水中三鹵甲烷的主要前驅物質。然而,導入前臭氧程入有助於疏水性有機物混凝的去除,但是對於親水性有機物影響不明顯。
在建立混凝去除預測模式之研究中,利用競爭和非競爭吸附模式,考量天然有機物中親、疏水性的差異,並探討其競爭性;藉由原水SUVA值、溶解性有機碳與添加混凝劑量的發現,結合親疏水性非競爭性吸附模式有較合理的結果,並且能獲得一個準確度高的預測模式。
Due to the characteristics of high concentrations of dissolved organic carbon (DOC), low turbidity and low alkalinity in the Tai-Lake source water in Kinmen, the DOC is difficult to remove by conventional treatment processes. However, the introduction of the enhanced coagulation based on disinfectant/disinfection by-product Rule (D/DBP Rule) again would result in the formation of high trihalomethanes beyond the drinking water quality standard (80μg/L) in Taiwan. As a result, the purpose of this study was intended to evaluate the effect of pre-ozonation on the performance of coagulation and formation of trihalomethanes, to separate the hydrophobic and hydrophilic fractions of natural organic matters (NOMs), and to develop at DOC removal model in enhanced coagulation.
The results of this investigation reveal that the ozone doses and pH levels would influence the coagulation performance significantly. The pH levels and ozone doses were held at 9 and 0.45 mgO3/mgDOC, respectively. The removal efficiency of THMFP was about 60%. In addition, the results of the DAX-8 resin separation process indicate that the specific THMFP for hydrophobic and hydrophilic organics are 57.3 and 98.7 ugTHMFP/mgDOC, respectively. This suggests that hydrophilic organics are significant precursors of THMs. The introduction of pre-ozonation have a positive effect on hydrophobic organic removal, but an insignificant on hydrophilic organics.
In the comparison of competitive and non-competitive adsorption models for the hydrophilic and hydrophobic organics, the non-competitive adsorption models could successfully predict the hydrophilic and hydrophobic DOCs removal in the enhanced coagulation process.
誌謝 Ⅰ
中文摘要 Ⅲ
ABSTRACT Ⅴ
CONTENTS Ⅶ
LIST OF FIGURES Ⅹ
LIST OF TABLES ⅪⅤ
CHAPTER 1 INTRODUCTION 1-1
1.1 BACKGROUND 1-1
1.2 OBJECTIVES 1-2
1.3 MAJOR TASKS 1-3
CHAPTER 2 LITERATURE REVIEW 2-1
2.1 CHARACTERIZATION OF ORGANIC MATTERS IN NATURAL WATER 2-1
2.1.1 Surrogate parameters of NOMs 2-4
2.1.2 Separating organic matters by XAD resin 2-4
2.2 COAGULATION 2-6
2.2.1 Enhanced coagulation 2-6
2.2.2 Mechanism of coagulation 2-10
2.3 OZONATION 2-15
2.3.1 Mechanism of ozone 2-15
2.3.2 Effect of pre-ozonation on coagulation 2-17
2.4 PREDICTIVE MODEL OF DOC REMOVAL 2-21
2.4.1 The langmuir-based model 2-21
2.4.2 Modeling DOC removal by Kastl 2-23
CHAPTER 3 MATERIALS AND METHODS 3-1
3.1 RESEARCH FLOWCHART 3-1
3.2 METHODS 3-2
3.2.1 Experimental design 3-2
3.2.2 Unit process 3-7
3.2.3 Analytical method for traditional physical and chemical properties 3-14
3.2.4 Analytical method for THMs 3-23
3.2.5 FTIR analysis 3-26
3.3 MATERIALS 3-27
3.3.1 Apparatus 3-27
3.3.2 Chemicals 3-29
CHAPTER 4 RESULTS AND DISCUSSIONS 4-1
4.1 PRELIMINARY EXPERIMENT 4-1
4.1.1 Basic water quality 4-1
4.1.2 Isolated NOM components 4-1
4.1.3 Effects of ozone treatment on raw water 4-3
4.1.4 Background information analyses 4-8
4.2 PERFORMANCE EVALUATION OF PRE-OZONATION/COAGULATION PROCESSES 4-11
4.2.1 Turbidity removal 4-11
4.2.2 Nature organic matters (NOMs) removal 4-16
4.2.3 Determination of the optimum pre-ozonation/coagulation dosage 4-27
4.3 COMPARISON OF DBPS AND CHARACTER OF NOM 4-30
4.3.1 Effects of hydrophilic/hydrophobic on removal efficiency 4-31
4.3.2 Comparison of THM formation with and without pre-ozonation on coagulation 4-40
4.4 MODEL DEVELOPMENT 4-51
4.4.1 Kastl’s model for predicting DOC removal 4-52
4.4.2 Model development for bi-components 4-62
4.4.3 Development of the model with ozone for predicting DOC removal 4-80
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5-1
5.1 CONCLUSIONS 5-1
5.2 RECOMMENDATIONS 5-3
REFERENCES
APPENDIX
Alaton, I.A., Balcioglu, I.A., Bahnemann, D.W., 2002. Advanced oxidation of reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes, Water Res. 36, 1143–1154.
Becher, G., 1999. Drinking water chlorination and health, Acta Hydrochimica. Hydrobiologica, 27(2), 100–102.
Becker, W., O’Melia, C., 1996. Ozone, oxalic acid, and organic matter molecular weight-effects on coagulation, Ozone Sci. Eng., 18, 311–324.
Bekbolet, M., Uyguner, C.S., Selcuk H., Rizzo L., Nikolaou, A.D., Meriç, S., Belgiorno, V., 2005. Application of oxidative removal of NOM to drinking water and formation of disinfection by-products. Desalination, 176(1-3), 155-166.
Bourbigot, M.D., 1984. Oxidation of organic compounds through the combination ozone-hydrogen peroxide, Ozone Sci. Eng., 6, 163–183.
Bull, R.J., Birnbaum, L.S., Cantor, K.P., Rose, J.B., Butterworth, B.E., Pegram, R., Tuomisto J., 1995. Water chlorination: essential process or cancer hazard? Fund. Appl. Toxicol., 28(2), 155-166.
Cathalifaud, G., Mossa, M.T.W., Mazet, M., 1993. Performed ferric hydroxide flocs as adsorbents for humic substances Water Sci. Technol., 27, 55-60.

Chang, E.E., Liang, C.H., Ko, Y.W., Chiang P.C., 2002. Effect of ozone dosage for removal of model compounds by ozone/GAC treatment. Ozone Sci. Eng., 24, 357-367.

Chu, W., Ching, M.H., 2003. Modeling the ozonation of 2, 4-dichlorophoxyacetic acid through a kinetic approach, Water Res., 37(1), 39-46.

Croue, J.P., Lefebre, E., Martin, B., Ligube, B., 1993. Removal of dissolved hydrophobic and hydrophilic organic substances during coagulation flocculation of surface waters. Water Sci. Technol., 27, 143-152.

Davis, J.A., 1982. Adsorption of Natural dissolved organic matter at the oxide-water Interface. Geochim. Cosmochim, Acta 46, 238.

Daniel, U., Peter, M. H., Graham, A. G., and Dennis, M., 1999. Modeling enhanced coagulation to improve ozone disinfection. J. Am. Water Works Assoc., 91(3), 59-73.

DeAngelo, A.B., Geter, D.R., Rosenberg, D.W., Crary, C.K., George, M.H., 2002. The induction of aberrant crypt foci (ACP) in the colons of rats by trihalomethanes administered in the drinking water. Cancer Letters,187, 25–31.

Dentel, S.K., 1991. Coagulation control in water treatment. CRC Crit. Rev. Environ. Control., 21, 41–135.

Draper, N.R., Smith, H., 1981. Applied regression analysis 2 edition, John Wiley, New York.

Duan. J., Gregory J., 2003. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100 –102, 475–502.

Edwards, M., Benjamin, M.M., 1992. Transformation of NOM by ozone and its Effect on iron and aluminum solubility. J. Am. Water Works Assoc., 84(6), 56-66.

Edwards, M., 1997. Predicting DOC removal during enhanced coagulation. J. Am. Water Works Assoc., 89(5), 78.

Edzwalds, J.K., Tobiason, J.E., 1999. Enhanced coagulation: US requirement and a broader view. Water Sci. Technol., 40(9), 63-70.

Galapate, R.P., Baes, A.U., Ito, K., Iwase, K., Okada, M., 1999. Trihalomethane formation potential prediction using some chemical functional groups and bulk parameters. Water Res.,33, 2555-60,

Goslan, E.H., Fearing, D.A., Banks, J., Wilson, D., Hillis, P., Campbell, A.T., 2002. Seasonal variations in the disinfection by-product precursor profile of a reservoir water. J Water Supply: Res Technol., AQUA 51(8), 475– 82.

Guanghui, Hua, Davida, Reckhow, 2007. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size, Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01003.

Gunten, U.V, 2003. Ozonation of drinking water: part I. oxidation kinetics and product formation. Water Res., 37, 1443–1467.

GUO, J., MA, J., 2007. Effect of preozonation on the adsorption behaviors of NOM on alumina. Environ. Sci., 1(28), 3.

Hanna, V.J., Johnson, W.D., Quezada, R.A., Wilson, M.A., Xiao-Qiao, L., 1991. Characterization of aqueous humic substances before and after chlorination. Environ. Sci. Technol., 25 (6), 1160-1164.

Harrington, G.W., DiGiano, F.A.,.1989. Adsorption equilibria of natural organic matter after ozonation. J. Am. Water Works Assoc.,
81(6), 93-101.

Hoigen, J., 1998. Chemistry of aqueous ozone and transform of pollutants by ozonation and advanced oxidation process. Handbook of Environmental Chemistry, 5(C), 84-141.

Hoigné, J., Bader, H., 1983. Rate constants of reactions of ozone with organic and inorganic compounds in water. I.Non-dissociating organic compounds, Water Res. 17(2), 173–183.

Huang, W., Yeh, H., 1997. The effect of organic characteristics and
bromide on disinfection by-products formation by chlorination. J. Environ. Sci. Health, A32, 2311-2336.

Selcuka, H., Rizzob, L., Anastasia, N., Nikolaouc, Mericb, S., Belgiornob, V., Bekboletd, M., 2007. DBPs formation and toxicity monitoring in different origin water treated by ozone and alum/PAC coagulation, Desalination, 210, 31–43

George, K., Arumugam, S., Ian, F., John L.V., 2004. Modeling DOC removal by enhanced coagulation. J. Am. Water Works Assoc., 79.

Krasner, S.W., Croue, J.P., Buffle, J., Perdue, E.M., 1996. Three approaches for characterizing NOM. J. Am. Water Works Assoc., 88, 66-79.

Liang, L., Singer, P. C. 2003. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ. Sci. Technol., 37, 2920-2928.

Jobin, R., Ghosh, M.M., 1972. Effect of buffer Intensity and organic matter on the oxygenation of ferrous Iron. J. Am. Water Works Assoc., 64(7), 590-596.

Leenheer, J.A., 1981. Comprehensive approach to preparative isolation and fraction of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol., 15(5), 578-587.

Letterman, R.D., Vanderbrook, S.G., and Sricharoenchaikit, P., 1982. Electrophoretic mobility measurements in coagulation with aluminum salts. J. Am. Water Works Assoc., 74(1), 44-51.
LIU, H.L., Wang, D.S., Wang, M., Wang, L., Tang, H.X., 2006. Effects of pre-ozonation on organic matter coagulation. Environ. Sci., 27(3).
Lu, X.Q., Chen, Z.L., Yang, X.H., 1999. Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation, Water Res., 33(15), 3271-3280.
MacCarthy, P., Suffet, l.H., Eds., 1985. Aquatic humic substances: Influence on fate and treatment of pollutants. Advances in Chemistry Series 219; American Chemical Society: Washington, DC, 17-30.
Malcolm, R.L., MacCarthy, E., 1992. Quantitation evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water. [J] Environ Int., 18, 597-607.
Marhaba, T.F., Van, D., Lippincott, R.L., 2000. Changes in NOM fractionation through treatment: a comparison of ozonation and chlorination. Ozone Sci. Eng., 22249–266.
Marley, N.A., Gaffney, J.S., Oriandini, K.A., Picel, K.C., Choppin, G.R., 1992. Chemical characterization of size-fractionated. Humic and Environment. 113, 159-177.
Mollergren, A., 2004. Ozonation of potable water in a flocculation process. Department of Chemical Engineering 1, Lund Institute of Technology, Sweden and Hunter Water Australia.
O’Connor, J., Hash, L., Edwards, A.B., 1975. Deterioration of water quality in distribution system. J. Am. Water Works Assoc., 67(3), 113-120.
O’Melia, C.R., Becker, W.C., Au, K.K., 1999. Removal of humic substances by coagulation. Water. Sci. Technol., 40 (9), 47-54.
Orren, D.S., John, E.T., •2000. Preozonation effects on coagulation J. Am. Water Works Assoc., 92(10), 74-87.
Owen, D.M., Amy, G.L., Chowdhry, Z.K., 1993. Characterization of natural organic matter and its relationship to treatability, J. Am. Water Works Assoc. Res. Foundation, Report No. 900631, Denver, CO, USA.
Pual, W., Georg, A., Gary, A., Jean, D., 1998. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res., 33, 2265-2276.

Randkte, S.J., 1988. Organic contaminant removal by coagulation and related process combinations. J. Am. Water Works Assoc., 80(5), 40-56.

Reckhow, D.A.; Singer, P.C.; Trusell, R.R., Proc., 1984. Removal of organic halide precursors by pre-ozonation and alum coagulation. J. Am. Water Works Assoc., 76(4), 151-157.

Rowe, AJ., 2001. Probing hydration and the stability of protein solutions N a colloid science approach. Biochemical Chemistry. 93, 93-101.
Sadiq, R., Rodrssiguez, M.J., 2004. Disinfection byproducts (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ., 321, 21–46.
Selcuk, H., Vitosoglu, Y., Ozaydin, S., Bekbolet. M., 2005. Optimization of ozone and coagulation processes for bromate control in Istanbul drinking waters. Desalination, 176, 211-217.
Schnitzer, W., 1976. The chemistry of humic substances. Environmental Biogeochemistry, J. O. Nriague ed., Vol. 1, Ann Arbor Science, Ann Arbor, MI.
Shankar, C., Ramesh, S., Grishma, S., Houston, T.X., Ying, W., 2001. Quality and Membrane Treatability of the Lake Houston Water Supply. Grant Number Q-96-GR-02700-UH-002.
Sharp, E.L., Banks, J., Billica, J.A., Gertig, K.R., Henderson, R., Parsons, S.A., Jefferson, B., 2005. Application of zeta potential measurements for coagulation control: pilotplant experiences from UK and US waters with elevated organics. Water Sci. Technol., 5, 49-56.
Singer, P.C., 1990. Assessing ozonation research needs in water treatment. J. Am. Water Works Assoc., 82 1, 78–88.
Singer, P.C., Bilyk, K., 2002. Enhanced coagulation using a magnetic ion exchange resin. Water Res., 36, 4009-4022.
Sobeck, D.C., 2002. Examination of three theories for mechanisms of cation-indeuced bioflocculation. Water Res., 36, 527-538.
Stevenson, F.J., 1982. Humus Chemistry Genesis, Composition, Reaction, J. Wiley and Sons, New York, NY.
Taha, F., Marhaba, A., Aweewan, M., Chaichana, C.B., Prasert P., 2006. Trihalomethanes formation potential of shrimp farm effluents, Journal of Hazardous Materials. A136, 151–163.
Thurman, E.M., Malcolm, R.L., 1981. Preparative isolation of aquatic humic substances. Environ. Sci. & Technol., 15, 463-466.
Thurman, E.M., 1985. Organic geochemistry of nature water, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, the Netherlands. 15-17.
Unai, I.V., Jon, I., Alvarez, U., Juan R. Gonzalez, V., 2007. Removal and structural changes in natural organic matter in Spanish water treatment plant using nascent chlorine, Separation and Purification Technology. 57, 152–160.
USEPA (US Environmental Protection Agency). 1998. Disinfectants and disinfection byproducts. Final Rule. Fed. Reg, 63:241:69390.
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Farm, M.S., Fujii, R., Mopper, K., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic matter. Environ. Sci. Technol., 37, 4702-4708.
White, M.C., 1997. Evaluating criteria for enhanced coagulation compliance. J. Am. Water Works Assoc., 89(5), 64.
Lu, X.Q., Chen, Z.L., Yang, X.H., 1999. Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation. Water Res., 33(15), 3271-3280.
楊曉菁等,混凝處理自來水中消毒副產物前質之探討,國立台灣大學環境衛生研究所碩士論文,民國九十年。
王翔生等,加強混凝去除金門太湖原水天然有機物之探討,國立台灣大學環境工程研究所碩士論文,民國九十五年。
葉曉芸等,混凝單元腐植酸對小分子有機前質去除的影響,國立台灣大學環境工程研究所碩士論文,民國九十三年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊