跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮朱薔
研究生(外文):Thu-Trang Nguyen
論文名稱:高功率脈衝磁控濺鍍捲對捲系統於織品上濺鍍黃銅以實現智慧織布
論文名稱(外文):Brass Coating on Fabric by Using Roll-to-Roll High Power Impulse Magnetron Sputtering System for Smart Textiles
指導教授:何主亮何主亮引用關係
指導教授(外文):Ju-Liang He
口試委員:鄭國彬葛明德
口試委員(外文):Kuo-Pin ChengMing-Der Ger
口試日期:2016-07-31
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:97
中文關鍵詞:NA
外文關鍵詞:Electrically conductive textileAntibacterial textilesBrass-coated textilesRoll-to-roll high power impulse magnetron sputtering technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:1
Brass Coating on Fabric by Using Roll-to-Roll High Power Impulse Magnetron Sputtering System for Smart Textiles
Smart textiles have attracted tremendous attention in both academic researches and industrial applications, and thus contributing to an increasing number of products and applications by using various surface alterative accession for creating surface properties. Electrically conductive fabric/yarn are the key components of smart textiles, which could be used in healthcare, medical, sport, and military applications in the near future. Cu65Zn35 brass alloy, inherently antibacterial, highly electrically conductive, corrosion resistant, and low-cost, has been suggested as a potential candidate for smart textile applications. In this study, conductive brass-coated on polypropylene (PP) non-woven fabric and polyethylene terephthalate (PET) yarn have been investigated by using the roll-to-roll high power impulse magnetron sputtering (R2R-HIPIMS) system, which supplies high plasma density for coating with strong adhesion at the low substrate temperature, combined with the specially designed laboratory-scale R2R system for large-scale product evaluation. Hence, the obtained coating is expected to present better than those conventional processes.
Firstly, in the case of PP non-woven fabric, a web speed was optimized. Experimental results show that a uniform brass coating can be deposited with a crystalline face-centered cubic alpha structure. FE-SEM results reveal a uniform brass coating on the PP non-woven fabric. Ultimately, the substrate did not deteriorate under a specific peak power density of 268 W/cm2 (with a peak current of 110 A) at a maximum web speed of 1.5 m/min. The brass coating with an average film thickness of 65 nm over the PP non-woven fabric provides a sheet resistance of 501 Ω/□. It can be lowered even further through repetition of deposition turns, such as from 501 Ω/□ for 1 deposition turn to 88 Ω/□ for 4 deposition turns. It is found that the antibacterial efficiency (tested according to JIS L 1902: 2008) of the coated fabric can be greatly improved the bacteriostatic value S and bactericidal value L (S=5.3, L=3.2), as opposed to the uncoated fabric (S=3.8, L=0.7) against a gram-negative bacterium Escherichia coli (E. coli). After 10 times washing of the brass-coated fabric within 4 repeated deposition turns, it still provides optimal antibacterial efficacy (S=5, L=3.2).
Secondly, in the case of PET yarn, process optimization was studied at a web speed 0.4 and 1 m/min in which a substrate can be deposited safely and stably with a peak target power density of 308-346 W/cm2 without substrate deterioration. Results of the electrical measurement of brass-coated PET yarn show that the electrical resistance of brass-coated PET yarn reduced as the increasing of coating thickness. The film thickness of 105 nm gives a electrical resistance of 428 Ω at a web speed of 1 m/min, and a 215 nm decreases the electrical resistance to 23 Ω at a web speed of 0.4 m/min for testing 2 cm length of yarn.
Finally, based on these features, brass-coated textiles may have great potential for applications in the smart textile industry.
TABLE OF CONTENTS
ACKNOWLEDGMENT i
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
CHAPTER I. INTRODUCTION 1
1.1. The motivation 1
1.2. The objective of the research 3
1.3. Scope of the thesis 4
CHAPTER II. LITERATURE REVIEW 6
2.1. Smart textiles 6
2.2. Electrically conductive textiles 12
2.3. Application of the electrically conductive textile for smart textile 18
2.4. Sputtering technology for electrically conductive coating 25
2.5. Roll-to-roll manufacturing 32
CHAPTER III. MATERIALS AND METHODS 35
3.1. Target material and substrates 35
3.1.1. Brass target 35
3.1.2. Substrates 36
3.2. Methods 39
3.2.1. The experimental procedure 39
3.2.2. The adjustment of HIPIMS parameters and web speed 40
3.2.3. Microstructural observation and characterization of the brass film 45
3.2.4. Determination of the electrical resistance of the brass-coated 46
3.2.5. Antibacterial activity assessment 49
3.2.6. Durability test by washing 50
CHAPTER IV. RESULTS AND DISCUSSION 53
4.1. Brass-coated PP non-woven fabric 53
4.1.1. Coating process optimization 53
4.1.2. The color of brass-coated PP non-woven fabric 56
4.1.3. Morphology and structure of the brass coating 57
4.1.4. The color fastness of the brass coating for washing 62
4.1.5. Electrical resistance of brass-coated film 63
4.1.6. Antibacterial efficiency of brass-coated PP fabric 65
4.2. Brass-coated PET yarn 68
4.2.1. Coating process optimization 68
4.2.2. Morphology of the brass coating 69
4.2.3. Electrical resistance of the brass-coated PET yarn 70
CHAPTER 5. CONCLUSIONS 72
REFERENCES 76
[1]. M. C. Langston and D. G. Boutwell (1987). U.S. Patent No. 4,643,119. Washington, DC: U.S. Patent and Trademark Office.
[2]. J. Scholz, G. Nocke, F. Hollstein and A. Weissbach (2005). Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf. Coat. Technol., 192(2), 252-256.
[3]. M.A. Soto-Oviedo, O.A. Araújo, R. Faez, M.C. Rezende, and M.A. De Paoli (2006). Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth. Met., 156(18), 1249-1255.
[4]. Y. Lu, and L. Xue, (2012). Electromagnetic interference shielding, mechanical properties and water absorption of copper/bamboo fabric (Cu/BF) composites. Compos. Sci. Technol. 72(7), 828-834.
[5]. V. Šafářová, and J. Militký, (2012). A study of electrical conductivity of hybrid yarns containing metal fibers. J. Mater. Sci. Eng., B. 2(2), 197-202.
[6]. Y. Y. Duan, J. Jia, S.H. Wang, W. Yan, L. Jin, and Z. Y. Wang, (2007). Preparation of antimicrobial poly (ϵ‐caprolactone) electrospun nanofibers containing silver‐loaded zirconium phosphate nanoparticles. J. Appl Polym. Sci. 106(2), 1208-1214.
[7]. P. Osorio-Vargas, R. Sanjines, C. Ruales, C. Castro, C. Pulgarin, A. J. Rengifo-Herrera, and J. Kiwi, (2011). Antimicrobial Cu-functionalized surfaces prepared by bipolar asymmetric DC-pulsed magnetron sputtering (DCP). J. Photochem. Photobiol., A: Chemistry , 220(1), 70-76.
[8]. F. Carpi, and D. De Rossi, (2005). Electroactive polymer-based devices for e-textiles in biomedicine. IEEE transactions on Information Technology in biomedicine, 9(3), 295-318.
[9]. A. Dhawan, T. K. Ghosh, and A. Seyam, (2004). Fiber-based electrical and optical devices and systems. Scand. J. Gas, 36(2-3), 1-84.
[10]. I. Locher, and G. Tröster, (2008). Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Text. Res. J., 78(7), 583-594.
[11]. M. Sibinski, M. Jakubowska, and M. Sloma, (2010). Flexible temperature sensors on fibers. Sensors, 10(9), 7934-7946.
[12]. M. Stoppa, and A. Chiolerio, (2014). Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992.
[13]. R.H. Guo, S.X. Jiang, and J. W. Lan, (2013). Optimization of electroless nickel plating on polyester fabric. Fibers and Polymers, 14(3), 459-464.
[14]. E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. Kiekens, and D. Tseles, (2006). Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surf. Coat. Technol., 201(6), 3547-3551.
[15]. J. Zhang, B. Li, L. Wu and A. Wang (2013). Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun, 49(98), 11509-11511.
[16]. J. Yip, S. Jiang, and C. Wong, (2009). Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments. Surf. Coat. Technol., 204(3), 380-385.
[17]. R. Kukla, R. Ludwig, and J. Meinel, (1996). Overview on modern vacuum web coating technology. Surf. Coat. Technol., 86, 753-761.
[18]. J. Alami, S. Bolz, and K. Sarakinos, (2009). High power pulsed magnetron sputtering: Fundamentals and applications. J. Alloys Compd.,483(1), 530-534.
[19]. J.E. McIntyre and P.N. Daniels, (1995). Textile terms and definitions. Textile Institute, Manchester, United Kingdom.
[20]. X. Zhang and X. Tao, (2001). Smart textiles: Passive smart. Textile Asia, 45-49.
[21]. X. Zhang and X. Tao, (2001). Smart textiles: Active smart. Textile Asia, 49-52.
[22]. X. Zhang and X. Tao, (2001). Smart textiles: Verry smart. Textile Asia, 35-37.
[23]. J. Zięba, and M. Frydrysiak, (2006). Textronics–electrical and electronic textiles. Sensors for breathing frequency measurement. Fibres Text. East. Eur., 14(5), 59.
[24]. D. Marculescu, R. Marculescu, N.H. Zamora, P. Stanley-Marbell, P.K. Khosla, S. Park, and T. Kirstein, (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12), 1995-2018.
[25]. R. (Ed.). Chapman, (2012). Smart textiles for protection. Elsevier.
[26]. D. Meoli, and T. May-Plumlee, (2002). Interactive electronic textile development: A review of technologies. J. Tex. App. Technol. Man., 2(2), 1-12..
[27]. Z. Liu, and X. Liu, (2015). Progress on Fabric Electrodes Used in ECG Signals Monitoring. J. Tex. Sci. Technol., 1(03), 110.
[28].http://www.transparencymarketresearch.com/pressrelease/technical-textiles-market.htm
[29].http://www.transparencymarketresearch.com/pressrelease/smart-fabrics-and-interactive-textiles-market.htm
[30].http://www.grandviewresearch.com/industry-analysis/smart-textiles-industry
[31].http://www.slideshare.net/NanoMarkets/smart-textile-markets-20162023-slides
[32]. M.A. Hunt, T. Saito, R.H. Brown, A.S. Kumbhar, and A. K. Naskar, (2012). Patterned functional carbon fibers from polyethylene. Adv. Mater., 24(18), 2386-2389.
[33]. D. Chung, (2012).Carbon fiber composites. Butterworth-Heinemann.
[34]. A.S. Barnard, (2012). Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. Phys Chem., 14(29), 10080-10093.
[35]. A.R. Murray, E. Kisin, S.S. Leonard, S.H. Young, C. Kommineni, V.E. Kaga, ... and A.A. Shvedova, (2009). Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicol., 257(3), 161-171.
[36]. D. Meoli, and T.M Plumlee, (2002). Interactive electronic textile development: A review of technologies. J. Tex. App. Technol. Man., 2(2), 1-12.
[37]. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D. Bradley, and J. Durrant (2006). Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells, 90(20), 3520-3530.
[38]. D. Knittel, and E. Schollmeyer, (2009). Electrically high-conductive textiles. Synth. Met., 159(14), 1433-1437.
[39]. http://www.swicofil.com/textile_metallization.html
[40]. http://www.solgel.com/articles/nov00/mennig.htm
[41].http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=108832720
[42]. Y. Lu, (2009). Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing. Appl. Surf. Sci., 255(20), 8430-8434.
[43]. X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, (2007). Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surf. Coat. Technol., 201(16), 7018-7023.
[44]. H.W. Cui, K. Suganuma, and H. Uchida, (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Research, 8(5), 1604-1614.
[45]. Q. Wei, L. Yu, N. Wu, and S. Hong, (2008). Preparation and characterization of copper nanocomposite textiles. J. Ind. Text. , 37(3), 275-283.
[46]. A.E. Amin, (2013). A novel classification model for cotton yarn quality based on trained neural network using genetic algorithm. Knowledge-Based Systems,39, 124-132.
[47]. H. Wang, J. Wang, J. Hong, Q. Wei, W. Gao, and Z. Zhu, (2007). Preparation and characterization of silver nanocomposite textile. J. Coat. Technol. Res., 4(1), 101-106.
[48]. B.D. Yao, Y. F. Chan, and N. Wang, (2002). Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett., 81(4), 757-759.
[49]. M. Pollini, M. Russo, A. Licciulli, A. Sannino, and A. Maffezzoli, (2009). Characterization of antibacterial silver coated yarns. J. Mater. Sci. - Mater. Med., 20(11), 2361-2366.
[50]. S. Gimpel, U. Mohring, H. Muller, A. Neudeck, and W. Scheibner (2004). Textile-based electronic substrate technology. J. Ind. Text. ,33(3), 179-189.
[51]. J. Shieh, J.E. Huber, N.A. Fleck, and M.F. Ashby, (2001). The selection of sensors. Prog. Mater. Sci. , 46(3), 461-504.
[52]. J. Zięba and M. Frydrysiak, (2006). Textronics–electrical and electronic textiles. Sensors for breathing frequency measurement. Fibres & Textiles in Eastern Europe, 14(5), 59.
[53]. P. Xue and X.M. Tao. "Morphological and electromechanical studies of fibers coated with electrically conductive polymer." J. Appl. Polym. Sci., 98.4 (2005): 1844-1854.
[54]. P. Pötschke, T. Andres, T. Villmow, S. Pegel, H. Brünig, K. Kobashi, and L. Häussler, (2010). Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol., 70(2), 343-349.
[55]. P.T. Gibbs and H. Asada, (2005). Wearable conductive fiber sensors for multi-axis human joint angle measurements. J. Neuro. Eng. Rehabil., 2(1), 1.
[56]. Q.N. Hassonjee, J. Cera, R.M. Bartecki, T.A. Micka, C. Schultze, S.B. Burr, and E. Karayianni, (2007). U.S. Patent No. 7,308,294. Washington, DC: U.S. Patent and Trademark Office.
[57]. A. Tognetti, N. Carbonaro, G. Zupone, and D. De Rossi, (2006, August). Characterization of a novel data glove based on textile integrated sensors. In Engineering in Medicine and Biology Society, 2006. EMBS06. 28th Annual International Conference of the IEEE (pp. 2510-2513). IEEE.
[58]. http://www.typesofbacteria.co.uk/what-are-bacteria.html
[59]. http://micro.digitalproteus.com/morphology2.php
[60]. H.J. Lee, S.Y. Yeo, and S.H. Jeong, (2003). Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci., 38(10), 2199-2204.
[61]. K. Ghule, A.V. Ghule, B.J. Chen, and Y.C. Ling, (2006). Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem., 8(12), 1034-1041.
[62]. C.J. Chung, H.I. Lin, and J.L He, (2007). Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating. Surf. Coat. Technol., 202(4), 1302-1307.
[63]. T.N. Kim, Q.L. Feng, J.O. Kim, J.Wu, H. Wang, G.C. Chen, and F.Z. Cui, (1998). Antimicrobial effects of metal ions (Ag2+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci.: Materials in Medicine, 9(3), 129-134.
[64]. G. Grass, C. Rensing, and M. Solioz, (2011). Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 77(5), 1541-1547.
[65]. V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, (1999). A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol., 122(2), 290-293.
[66]. U. Helmersson, M. Latteman, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, (2006). Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 513(1), 1-24.
[67]. J.T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, (2012). High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol., A, 30(3), 030801.
[68]. K. Sarakinos, J. Alami, and S. Konstantinidis, (2010). High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol., 204(11), 1661-1684.
[69]. J. Alami, PhD Thesis, Linköping University, Linköping, Sweden, 2005.
[70]. D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning, and U. Helmersson (2008). Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol., 17(3), 035021.
[71]. B.M. DeKoven, P.R. Ward, R.E. Weiss, R.A. Christie, W. Scholl, D. Sproul, and A. Anders, (2003). Carbon thin film deposition using high power pulsed magnetronsputtering (No. LBNL--54684). OLLABORATION-INTEVAC.
[72]. W.D. Sproul, D.J. Christie, and D.C. Carter, (2005). Control of reactive sputtering processes. Thin solid films, 491(1), 1-17.
[73]. J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, ... and U. Helmersson, (2006). High-power impulse magnetron sputtering of Ti–Si–C thin films from a Ti 3 SiC 2 compound target. Thin Solid Films, 515(4), 1731-1736.
[74]. J. Alami, P. Å. Persson, D. Music, J. T. Gudmundsson, J. Bohlmark, and U. Helmersson, (2005). Ion-assisted physical vapor deposition for enhanced film properties on nonfat surfaces. J. Vac. Sci. Technol., A, 23(2), 278-280.
[75]. J. Morse, (2012). Nanofabrication technologies for Roll-to-roll processing.
[76]. R. Ludwig, R. Kukla, and E. Josephson, (2005). Vacuum web coating-state of the art and potential for electronics. Proceedings of the IEEE, 93(8), 1483-1490.
[77]. http://www.vacuumcoating.info/reelcoater-pvd-system-reel-to-reel
[78]. R.X. Wang, X.M. Tao, Y. Wang, G.F. Wang, and S.M. Shang, (2010). Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf. Coat. Technol., 204(8), 1206-1210.
[79]. S. Rtimi, O. Baghriche, C. Pulgarin, A. Ehiasarian, R. Bandorf, and J. Kiwi, (2014). Comparison of HIPIMS sputtered Ag-and Cu-surfaces leading to accelerated bacterial inactivation in the dark. Surf. Coat. Technol., 250, 14-20.
[80]. https://commons.wikimedia.org/wiki/File:Polypropylene.svg
[81]. http://www.ccyu.com.tw/
[82]. http://www.fibersource.com/f-tutor/polyester.htm.
[83]. J. Scheirs, and T.E. Long, (Eds.). (2005). Modern polyesters: chemistry and technology of polyesters and copolyesters. John Wiley & Sons.
[84]. G.M. Wu, (2004). Oxygen plasma treatment of high performance fibers for composites. Mater. Chem. Phys., 85(1), 81-87.
[85]. V. Šafářová, and J. Militký, (2012). A study of electrical conductivity of hybrid yarns containing metal fibers. J. Mater. Sci. Technol. B,2 (2), 197-202.
[86]. H.L. Davis, M.L. Jaffe, H.L. LaNieve III, and E.J. Powers, (1978). U.S. Patent No. 4,101,525. Washington, DC: U.S. Patent and Trademark Office.
[87]. JIS L1902: 2008, “Testing for antibacterial activity textile products and efficacy,” Japanese Industrial Standard, 2008.
[88]. ISO 105-C10 (2006). Textiles-tests for colour fastness-part C10 colour fastness to washing with soap or soap and soda
[89]. J. Alami, K. Sarakinos, G. Mark, and M. Wuttig, (2006). On the deposition rate in a high power pulsed magnetron sputtering discharge. Appl. Phys. Lett.,89(15), 154104
[90]. http://www.tgpl.nl/kennis/Kleursystemen/243/CIE%20lab
[91]. Y.H. Chen, G.W. Wu, and J.L. He, (2015). Antimicrobial brass coatings prepared on poly (ethylene terephthalate) textile by high power impulse magnetron sputtering. Mater. Sci. Eng., C, 48, 41-47.
[92].https://en.wikipedia.org/wiki/Stranski%E2%80%93Krastanov_growth
[93]. A. Heidarzadeh and T. Saeid, (2016). A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater. Sci. Eng., A, 649, 349-358.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top