|
[1]. M. C. Langston and D. G. Boutwell (1987). U.S. Patent No. 4,643,119. Washington, DC: U.S. Patent and Trademark Office. [2]. J. Scholz, G. Nocke, F. Hollstein and A. Weissbach (2005). Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf. Coat. Technol., 192(2), 252-256. [3]. M.A. Soto-Oviedo, O.A. Araújo, R. Faez, M.C. Rezende, and M.A. De Paoli (2006). Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth. Met., 156(18), 1249-1255. [4]. Y. Lu, and L. Xue, (2012). Electromagnetic interference shielding, mechanical properties and water absorption of copper/bamboo fabric (Cu/BF) composites. Compos. Sci. Technol. 72(7), 828-834. [5]. V. Šafářová, and J. Militký, (2012). A study of electrical conductivity of hybrid yarns containing metal fibers. J. Mater. Sci. Eng., B. 2(2), 197-202. [6]. Y. Y. Duan, J. Jia, S.H. Wang, W. Yan, L. Jin, and Z. Y. Wang, (2007). Preparation of antimicrobial poly (ϵ‐caprolactone) electrospun nanofibers containing silver‐loaded zirconium phosphate nanoparticles. J. Appl Polym. Sci. 106(2), 1208-1214. [7]. P. Osorio-Vargas, R. Sanjines, C. Ruales, C. Castro, C. Pulgarin, A. J. Rengifo-Herrera, and J. Kiwi, (2011). Antimicrobial Cu-functionalized surfaces prepared by bipolar asymmetric DC-pulsed magnetron sputtering (DCP). J. Photochem. Photobiol., A: Chemistry , 220(1), 70-76. [8]. F. Carpi, and D. De Rossi, (2005). Electroactive polymer-based devices for e-textiles in biomedicine. IEEE transactions on Information Technology in biomedicine, 9(3), 295-318. [9]. A. Dhawan, T. K. Ghosh, and A. Seyam, (2004). Fiber-based electrical and optical devices and systems. Scand. J. Gas, 36(2-3), 1-84. [10]. I. Locher, and G. Tröster, (2008). Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Text. Res. J., 78(7), 583-594. [11]. M. Sibinski, M. Jakubowska, and M. Sloma, (2010). Flexible temperature sensors on fibers. Sensors, 10(9), 7934-7946. [12]. M. Stoppa, and A. Chiolerio, (2014). Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992. [13]. R.H. Guo, S.X. Jiang, and J. W. Lan, (2013). Optimization of electroless nickel plating on polyester fabric. Fibers and Polymers, 14(3), 459-464. [14]. E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. Kiekens, and D. Tseles, (2006). Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surf. Coat. Technol., 201(6), 3547-3551. [15]. J. Zhang, B. Li, L. Wu and A. Wang (2013). Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun, 49(98), 11509-11511. [16]. J. Yip, S. Jiang, and C. Wong, (2009). Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments. Surf. Coat. Technol., 204(3), 380-385. [17]. R. Kukla, R. Ludwig, and J. Meinel, (1996). Overview on modern vacuum web coating technology. Surf. Coat. Technol., 86, 753-761. [18]. J. Alami, S. Bolz, and K. Sarakinos, (2009). High power pulsed magnetron sputtering: Fundamentals and applications. J. Alloys Compd.,483(1), 530-534. [19]. J.E. McIntyre and P.N. Daniels, (1995). Textile terms and definitions. Textile Institute, Manchester, United Kingdom. [20]. X. Zhang and X. Tao, (2001). Smart textiles: Passive smart. Textile Asia, 45-49. [21]. X. Zhang and X. Tao, (2001). Smart textiles: Active smart. Textile Asia, 49-52. [22]. X. Zhang and X. Tao, (2001). Smart textiles: Verry smart. Textile Asia, 35-37. [23]. J. Zięba, and M. Frydrysiak, (2006). Textronics–electrical and electronic textiles. Sensors for breathing frequency measurement. Fibres Text. East. Eur., 14(5), 59. [24]. D. Marculescu, R. Marculescu, N.H. Zamora, P. Stanley-Marbell, P.K. Khosla, S. Park, and T. Kirstein, (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12), 1995-2018. [25]. R. (Ed.). Chapman, (2012). Smart textiles for protection. Elsevier. [26]. D. Meoli, and T. May-Plumlee, (2002). Interactive electronic textile development: A review of technologies. J. Tex. App. Technol. Man., 2(2), 1-12.. [27]. Z. Liu, and X. Liu, (2015). Progress on Fabric Electrodes Used in ECG Signals Monitoring. J. Tex. Sci. Technol., 1(03), 110. [28].http://www.transparencymarketresearch.com/pressrelease/technical-textiles-market.htm [29].http://www.transparencymarketresearch.com/pressrelease/smart-fabrics-and-interactive-textiles-market.htm [30].http://www.grandviewresearch.com/industry-analysis/smart-textiles-industry [31].http://www.slideshare.net/NanoMarkets/smart-textile-markets-20162023-slides [32]. M.A. Hunt, T. Saito, R.H. Brown, A.S. Kumbhar, and A. K. Naskar, (2012). Patterned functional carbon fibers from polyethylene. Adv. Mater., 24(18), 2386-2389. [33]. D. Chung, (2012).Carbon fiber composites. Butterworth-Heinemann. [34]. A.S. Barnard, (2012). Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. Phys Chem., 14(29), 10080-10093. [35]. A.R. Murray, E. Kisin, S.S. Leonard, S.H. Young, C. Kommineni, V.E. Kaga, ... and A.A. Shvedova, (2009). Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicol., 257(3), 161-171. [36]. D. Meoli, and T.M Plumlee, (2002). Interactive electronic textile development: A review of technologies. J. Tex. App. Technol. Man., 2(2), 1-12. [37]. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D. Bradley, and J. Durrant (2006). Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells, 90(20), 3520-3530. [38]. D. Knittel, and E. Schollmeyer, (2009). Electrically high-conductive textiles. Synth. Met., 159(14), 1433-1437. [39]. http://www.swicofil.com/textile_metallization.html [40]. http://www.solgel.com/articles/nov00/mennig.htm [41].http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=108832720 [42]. Y. Lu, (2009). Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing. Appl. Surf. Sci., 255(20), 8430-8434. [43]. X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, (2007). Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surf. Coat. Technol., 201(16), 7018-7023. [44]. H.W. Cui, K. Suganuma, and H. Uchida, (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Research, 8(5), 1604-1614. [45]. Q. Wei, L. Yu, N. Wu, and S. Hong, (2008). Preparation and characterization of copper nanocomposite textiles. J. Ind. Text. , 37(3), 275-283. [46]. A.E. Amin, (2013). A novel classification model for cotton yarn quality based on trained neural network using genetic algorithm. Knowledge-Based Systems,39, 124-132. [47]. H. Wang, J. Wang, J. Hong, Q. Wei, W. Gao, and Z. Zhu, (2007). Preparation and characterization of silver nanocomposite textile. J. Coat. Technol. Res., 4(1), 101-106. [48]. B.D. Yao, Y. F. Chan, and N. Wang, (2002). Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett., 81(4), 757-759. [49]. M. Pollini, M. Russo, A. Licciulli, A. Sannino, and A. Maffezzoli, (2009). Characterization of antibacterial silver coated yarns. J. Mater. Sci. - Mater. Med., 20(11), 2361-2366. [50]. S. Gimpel, U. Mohring, H. Muller, A. Neudeck, and W. Scheibner (2004). Textile-based electronic substrate technology. J. Ind. Text. ,33(3), 179-189. [51]. J. Shieh, J.E. Huber, N.A. Fleck, and M.F. Ashby, (2001). The selection of sensors. Prog. Mater. Sci. , 46(3), 461-504. [52]. J. Zięba and M. Frydrysiak, (2006). Textronics–electrical and electronic textiles. Sensors for breathing frequency measurement. Fibres & Textiles in Eastern Europe, 14(5), 59. [53]. P. Xue and X.M. Tao. "Morphological and electromechanical studies of fibers coated with electrically conductive polymer." J. Appl. Polym. Sci., 98.4 (2005): 1844-1854. [54]. P. Pötschke, T. Andres, T. Villmow, S. Pegel, H. Brünig, K. Kobashi, and L. Häussler, (2010). Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos. Sci. Technol., 70(2), 343-349. [55]. P.T. Gibbs and H. Asada, (2005). Wearable conductive fiber sensors for multi-axis human joint angle measurements. J. Neuro. Eng. Rehabil., 2(1), 1. [56]. Q.N. Hassonjee, J. Cera, R.M. Bartecki, T.A. Micka, C. Schultze, S.B. Burr, and E. Karayianni, (2007). U.S. Patent No. 7,308,294. Washington, DC: U.S. Patent and Trademark Office. [57]. A. Tognetti, N. Carbonaro, G. Zupone, and D. De Rossi, (2006, August). Characterization of a novel data glove based on textile integrated sensors. In Engineering in Medicine and Biology Society, 2006. EMBS06. 28th Annual International Conference of the IEEE (pp. 2510-2513). IEEE. [58]. http://www.typesofbacteria.co.uk/what-are-bacteria.html [59]. http://micro.digitalproteus.com/morphology2.php [60]. H.J. Lee, S.Y. Yeo, and S.H. Jeong, (2003). Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci., 38(10), 2199-2204. [61]. K. Ghule, A.V. Ghule, B.J. Chen, and Y.C. Ling, (2006). Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem., 8(12), 1034-1041. [62]. C.J. Chung, H.I. Lin, and J.L He, (2007). Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating. Surf. Coat. Technol., 202(4), 1302-1307. [63]. T.N. Kim, Q.L. Feng, J.O. Kim, J.Wu, H. Wang, G.C. Chen, and F.Z. Cui, (1998). Antimicrobial effects of metal ions (Ag2+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci.: Materials in Medicine, 9(3), 129-134. [64]. G. Grass, C. Rensing, and M. Solioz, (2011). Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 77(5), 1541-1547. [65]. V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, (1999). A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol., 122(2), 290-293. [66]. U. Helmersson, M. Latteman, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, (2006). Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 513(1), 1-24. [67]. J.T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, (2012). High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol., A, 30(3), 030801. [68]. K. Sarakinos, J. Alami, and S. Konstantinidis, (2010). High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol., 204(11), 1661-1684. [69]. J. Alami, PhD Thesis, Linköping University, Linköping, Sweden, 2005. [70]. D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning, and U. Helmersson (2008). Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol., 17(3), 035021. [71]. B.M. DeKoven, P.R. Ward, R.E. Weiss, R.A. Christie, W. Scholl, D. Sproul, and A. Anders, (2003). Carbon thin film deposition using high power pulsed magnetronsputtering (No. LBNL--54684). OLLABORATION-INTEVAC. [72]. W.D. Sproul, D.J. Christie, and D.C. Carter, (2005). Control of reactive sputtering processes. Thin solid films, 491(1), 1-17. [73]. J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, ... and U. Helmersson, (2006). High-power impulse magnetron sputtering of Ti–Si–C thin films from a Ti 3 SiC 2 compound target. Thin Solid Films, 515(4), 1731-1736. [74]. J. Alami, P. Å. Persson, D. Music, J. T. Gudmundsson, J. Bohlmark, and U. Helmersson, (2005). Ion-assisted physical vapor deposition for enhanced film properties on nonfat surfaces. J. Vac. Sci. Technol., A, 23(2), 278-280. [75]. J. Morse, (2012). Nanofabrication technologies for Roll-to-roll processing. [76]. R. Ludwig, R. Kukla, and E. Josephson, (2005). Vacuum web coating-state of the art and potential for electronics. Proceedings of the IEEE, 93(8), 1483-1490. [77]. http://www.vacuumcoating.info/reelcoater-pvd-system-reel-to-reel [78]. R.X. Wang, X.M. Tao, Y. Wang, G.F. Wang, and S.M. Shang, (2010). Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf. Coat. Technol., 204(8), 1206-1210. [79]. S. Rtimi, O. Baghriche, C. Pulgarin, A. Ehiasarian, R. Bandorf, and J. Kiwi, (2014). Comparison of HIPIMS sputtered Ag-and Cu-surfaces leading to accelerated bacterial inactivation in the dark. Surf. Coat. Technol., 250, 14-20. [80]. https://commons.wikimedia.org/wiki/File:Polypropylene.svg [81]. http://www.ccyu.com.tw/ [82]. http://www.fibersource.com/f-tutor/polyester.htm. [83]. J. Scheirs, and T.E. Long, (Eds.). (2005). Modern polyesters: chemistry and technology of polyesters and copolyesters. John Wiley & Sons. [84]. G.M. Wu, (2004). Oxygen plasma treatment of high performance fibers for composites. Mater. Chem. Phys., 85(1), 81-87. [85]. V. Šafářová, and J. Militký, (2012). A study of electrical conductivity of hybrid yarns containing metal fibers. J. Mater. Sci. Technol. B,2 (2), 197-202. [86]. H.L. Davis, M.L. Jaffe, H.L. LaNieve III, and E.J. Powers, (1978). U.S. Patent No. 4,101,525. Washington, DC: U.S. Patent and Trademark Office. [87]. JIS L1902: 2008, “Testing for antibacterial activity textile products and efficacy,” Japanese Industrial Standard, 2008. [88]. ISO 105-C10 (2006). Textiles-tests for colour fastness-part C10 colour fastness to washing with soap or soap and soda [89]. J. Alami, K. Sarakinos, G. Mark, and M. Wuttig, (2006). On the deposition rate in a high power pulsed magnetron sputtering discharge. Appl. Phys. Lett.,89(15), 154104 [90]. http://www.tgpl.nl/kennis/Kleursystemen/243/CIE%20lab [91]. Y.H. Chen, G.W. Wu, and J.L. He, (2015). Antimicrobial brass coatings prepared on poly (ethylene terephthalate) textile by high power impulse magnetron sputtering. Mater. Sci. Eng., C, 48, 41-47. [92].https://en.wikipedia.org/wiki/Stranski%E2%80%93Krastanov_growth [93]. A. Heidarzadeh and T. Saeid, (2016). A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater. Sci. Eng., A, 649, 349-358.
|