|
一、英文部分 Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749. Aimeur, E., Brassard, G., Fernandez, J.M., & Onana, F.S.M. (2006). Privacy preserving demographic filtering. Proceedings of the 2006 ACM symposium on Applied Computing, 872-878. Balabanovic, M., & Shoham, Y. (1997). Content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72. Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. Chung, H.M., & Gray, P. (1999). Special section data mining. Journal of Management Information Systems, 16(1), 11-16. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems (Vol. 60). Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., & Riedl, J. (1999). Combining collaborative filtering with personal agents for better recommendations. Proceedings of the National Conference on Artificial Intelligence, 439-446. Gunawardana, A., & Meek, C. (2009). A unified approach to building hybrid recommender systems. Proceedings of the third ACM Conference on Recommender systems, 117-124. Hagan, M.T., Demuth, H.B., & Beale, M.H. (1996). Neural Network Design. Hand, D.J. (1998). Data mining: Statistics and more?. The American Statistician, 52(2), 112-118. Heijden, H., Kotsis, G., & Kronsteiner, R. (2005). Mobile recommendation systems for decision making 'on the go'. Mobile Business, 2005. ICMB 2005. International Conference on. IEEE, 137-143. Herlocker, J.L., Konstan, J.A., Terveen, L.G., & Ried, J.T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. Jahrer, M., Töscher, A., & Legenstein, R. (2010). Combining predictions for accurate recommender systems. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 693-702. Lee, M., Choi, P., & Woo, Y. (2002). A hybrid recommender system combining collaborative filtering with neural network. Lecture Notes in Computer Science, 531-534. Marmanis, H., & Babenko, D. (2009). Algorithms of the Intelligent Web. Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. Proceedings of the Fifth ACM Conference on Digital Libraries, 195-204. Pazzani, M.J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408. Resnick, P., & Varian, H.R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. Salzberg, S.L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3), 317-328. Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the tenth International Conference on World Wide Web, 285-295. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, 158-167. Schafer, J.B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, 158-166. Schein, A.I., Popescul, A., Ungar, L.H., & Pennock, D.M. (2002). Methods and metrics for cold-start recommendations. Proceedings of the 25th Annual International ACM SIGIR conference on Research and Development in Information Retrieval, 253-260. Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining-book. Cluster Analysis: Basic Concepts and Algorithms, 532-568. Ye, N. (2003). The Handbook of Data Mining. Lawrence Erlbaum Associates, Publishers.
二、網頁部份 MovieLens網站(2012),(檢索日期2012/December) http://www.grouplens.org/node/73
|