跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范景怡
研究生(外文):Ching-Yi Fan
論文名稱:運用資料探勘技術於混合式推薦系統預測整合之研究
論文名稱(外文):Applying Data Mining Techniques to Combine Predictions in Hybrid Recommender Systems
指導教授:黃謙順黃謙順引用關係
指導教授(外文):Chein-Shung Hwang
口試委員:蘇耀新蘇意晴
口試日期:2013-06-15
學位類別:碩士
校院名稱:中國文化大學
系所名稱:資訊管理學系碩士在職專班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:混合式推薦系統資料探勘線性回歸類神經
外文關鍵詞:Hybrid Recommender SystemData MiningLinear RegressionNeural Networks
相關次數:
  • 被引用被引用:4
  • 點閱點閱:794
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
推薦系統發展至今已產生多種不同的技術,大致上主要可分為:內容式過濾、協同式過濾、人口特徵過濾這三種,但是這些技術在個別使用上,都分別有一些潛在的問題存在。有鑑於此,已有不少的學者,提出改以數種推薦方式混合使用來進行,目的希望能夠截長補短,降低單一方法的缺點,以達到提供更精確的推薦。

然而目前大部分被使用的混合方式,大多是根據過去的研究經驗,選擇行之有效的啟發式方法來進行混合推薦,缺乏嚴謹的理論基礎。因此本研究嘗試運用推薦技術的概念,分別以內容式過濾、協同式過濾,以及人口特徵過濾,將這些推薦方法結合資料探勘技術,資料探勘分類技術能夠從龐大的資料中,挖掘出各個項目之間隱藏性的知識與規則,並建立資料屬性與類別之間的關係模型,進而以此關係模型做更有效的預測。

考量到不同資料探勘技術所展現出來的成效也許會有差異,因此本研究將同時使用線性回歸與類神經網路兩種演算法,來建立一套新的混合推薦系統預測模型,並比較不同推薦技術之間的成效,找出最佳的混合推薦模型。

Nowadays, the Recommender System has been developed in several different ways for operating. The main techniques are used to develop Recommender System: CB (Content-Based), CF (Collaborative Filtering) and DF (Demographic Filtering). However, each technique has its advantages and limitations. For this reason, many scholars have proposed combine several techniques, intended to reduce the disadvantages of a single method, and achieve more precise recommendation.

Currently, the main techniques are used to develop Recommender System, mostly according to the experience of the past research or heuristic method. It lacks of rigorous theoretical foundation. Therefore, this study hopes to use the concepts of CB and CF, plus DF techniques, combining the Data Mining techniques (i.e., Linear Regression, Neural Networks) with the predication. To sum up, it will provide a more accurate prediction than one single technique, and overcome the limitations of each respective potential problem.

中文摘要....................................i
英文摘要...................................ii
內容目錄...................................iv
第一章 緒論...............................1
第一節 研究背景........................1
第二節 研究動機........................2
第三節 研究目的........................4
第四節 研究對象........................4
第五節 研究流程........................5
第六節 研究架構........................6
第二章 文獻探討............................7
第一節 推薦技術........................7
第二節 資料探勘技術....................11
第三節 混合式推薦系統..................16
第四節 混合式推薦系統相關文獻............21
第三章 研究方法...........................23
第一節 系統架構.......................23
第二節 系統評估.......................32
第四章 實驗設計.............................35
第一節 實驗環境與工具....................35
第二節 實驗設計.........................35
第三節 系統建立.........................41
第五章 實驗結果與評估分析.....................50
第一節 單一與混合模型平均絕對誤差比較.......51
第二節 單一與混合模型精確度比較............53
第三節 單一與混合模型喚回率比較............55
第四節 單一與混合模型F-MEASURE值比較......57
第五節 單一與混合模型準確率比較............59
第六章 結論及未來研究方向...................61
第一節 結論..........................61
第二節 未來研究方向....................63
參 考 文 獻................................64
一、英文部分
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Aimeur, E., Brassard, G., Fernandez, J.M., & Onana, F.S.M. (2006). Privacy preserving demographic filtering. Proceedings of the 2006 ACM symposium on Applied Computing, 872-878.
Balabanovic, M., & Shoham, Y. (1997). Content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72.
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370.
Chung, H.M., & Gray, P. (1999). Special section data mining. Journal of Management Information Systems, 16(1), 11-16.
Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems (Vol. 60).
Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., & Riedl, J. (1999). Combining collaborative filtering with personal agents for better recommendations. Proceedings of the National Conference on Artificial Intelligence, 439-446.
Gunawardana, A., & Meek, C. (2009). A unified approach to building hybrid recommender systems. Proceedings of the third ACM Conference on Recommender systems, 117-124.
Hagan, M.T., Demuth, H.B., & Beale, M.H. (1996). Neural Network Design.
Hand, D.J. (1998). Data mining: Statistics and more?. The American Statistician, 52(2), 112-118.
Heijden, H., Kotsis, G., & Kronsteiner, R. (2005). Mobile recommendation systems for decision making 'on the go'. Mobile Business, 2005. ICMB 2005. International Conference on. IEEE, 137-143.
Herlocker, J.L., Konstan, J.A., Terveen, L.G., & Ried, J.T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.
Jahrer, M., Töscher, A., & Legenstein, R. (2010). Combining predictions for accurate recommender systems. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 693-702.
Lee, M., Choi, P., & Woo, Y. (2002). A hybrid recommender system combining collaborative filtering with neural network. Lecture Notes in Computer Science, 531-534.
Marmanis, H., & Babenko, D. (2009). Algorithms of the Intelligent Web.
Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. Proceedings of the Fifth ACM Conference on Digital Libraries, 195-204.
Pazzani, M.J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408.
Resnick, P., & Varian, H.R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Salzberg, S.L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3), 317-328.
Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the tenth International Conference on World Wide Web, 285-295.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, 158-167.
Schafer, J.B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, 158-166.
Schein, A.I., Popescul, A., Ungar, L.H., & Pennock, D.M. (2002). Methods and metrics for cold-start recommendations. Proceedings of the 25th Annual International ACM SIGIR conference on Research and Development in Information Retrieval, 253-260.
Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining-book. Cluster Analysis: Basic Concepts and Algorithms, 532-568.
Ye, N. (2003). The Handbook of Data Mining. Lawrence Erlbaum Associates, Publishers.

二、網頁部份
MovieLens網站(2012),(檢索日期2012/December) http://www.grouplens.org/node/73
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊