|  | 
[1]Arabas, J., Mulawka, J. and Pokrasniewicz, J., “A new class of the crossover operators for the numerical optimization,” Proceedings of the 6th International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 42-48, 1995.[2]Bäck, T., Evolutionary Algorithms in Theory and Practice. New York: Oxford Univ. Press, 1996.
 [3]Beyer, H.-G., “Toward a theory of evolution strategies: On the benefit of sex—the ( )-Theory,” Evol. Comput., vol. 3, no. 1, pp. 81–111, 1995.
 [4]Beyer, H.-G. “Toward a theory of evolution strategies: Self-adaptation,” Evolutionary Computation Journal 3(1), 81-111, 1995b.
 [5]Beyer, H.-G., “Toward a theory of evolution strategies: Self-adaptation,” Evolutionary Computation, vol. 3, no. 3, pp. 311–348, 1995.
 [6]Cantù-Paz, E ., A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007, University of Illinois at Urbana-Champaign, July, 1995.
 [7]Carlos Andrés Peña-Reyes, Moshe Sipper, “Evolutionary Computation in Medicine: an overview,” Artificial Intelligence in Medicine, 19, pp. 1-23, 2000.
 [8]Colorni, A., Dorigo, M. and Maniezzo, V., “An investigation of some properties of an ant algorithm,” Proceedings of the Parallel Problem Solving from Nature Conference, R. Manner and B. Manderick Eds. Brussels, Belgium: Elsevier, pp.509-520, 1992.
 [9]Colorni, A., Dorigo, M. and Maniezzo, V., “Distributed optimization by ant colnies,” Proceedings of the First European Conference Artificial Life, F. Varela and P. Bourgine, Eds. Paris, France: Elsevier, pp.134-142, 1991.
 [10]Darrell Whitley, L. and Kauth, J., GENITOR: a different genetic algorithm, Proceedings of the 1988 Rocky Mountain Conference on Artifical Intelligence, 1988.
 [11]Darrell Whitley, L. and Starkweather, T., “GENITOR II: a distributed genetic algorithm,” Journal of Experimental and Theoretical Artifical Intelligence 2, pp. 189-214, 1990.
 [12]Darrell Whitley, L., The GENITOR algorithm and selective pressure: why rank based allocation of reproductive trials is best, in: J. D. Schaffer (Ed.), Proceedings of the Third International Conference on GAs, Morgan Kaufmann, Los Atlos, CA, pp. 116-121., 1989
 [13]Deb, K. and Agrawal, R. B., “Simulated binary crossover for continuous search space.” Complex Systems, 9(2):115–148, 1995.
 [14]Deb, K., Anand, A. and Joshi, D., “A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization,” Evolutionary Computation 10(4), 371-395, 2002.
 [15]Dorigo, M., Bonabeau, E. and Theraulaz, G., “Ant algorithm and stigmergy,” Future Generation Computer Systems, 16, pp. 851-871, 2000.
 [16]Dorigo, M., Caro, G.D. and Gambarsella, L.M., “Ant algorithms for discrete optimization,” Artificial Life, 5, pp. 137-172, 1999.
 [17]Dorigo, M., Maniezzo, V. and Colorni, A., “Positive feedback as a research strategy,” Technology Report 91-016, Politecnico di Milano, 1991.
 [18]Dorigo, M. and Maria, L., “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Transactions evolution Computer, 1, pp.53–66, 1997.
 [19]Eshelman, L., The CHC adaptive search algorithm. How to have safe search when engaging in nontraditional genetic recombination, in: G. Rawlins (Eds.), FOGA-1, Morgan Kaufmann, Los Atlos, CA, pp. 265-283, 1991.
 [20]Eshelman, L. J. and Schaffer, D., Preventing premature convergence in genetic algorithms by preventing incest, in: L. Booker, R. Belew (Eds.), Proceedings of the Fourth International Conference on GAs, Morgan Kaufmann, Los Atlos, CA, 1991.
 [21]Eshelman, L. J. and Schaffer, J. D., Real-coded genetic algorithms and intervalschemata. In Foundations of Genetic Algorithms 2 (FOGA-2), pp.187-202, 1993.
 [22]Fogel, L. J., “Autonomous automata,” Ind. Res., vol. 4, pp. 14–19, 1962.
 [23]Fogel, L. J., “On the organization of intellect,” Ph.D. dissertation, University of California, Los Angeles, 1964.
 [24]Fogel, L. J., Owens, A. J., & Walsh, M. J., Artificial intelligence through simulated evolution. New York: Wiley, 1966.
 [25]Goldberg, D. E., Genetic Algorithms in Search, Optimazation and Machine Learning, Addison-Wesley, Reading, MA, 1989.
 [26]Goldberg, D. E., Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Systems 5(2), 139-168, 1991.
 [27]Goldberg, D. E., Deb, K. and Korb, B.,Messy genetic algorithms revisited: Nonuniform size and scale. Complex Systems 4(4), pp. 415-444, 1990.
 [28]Goldberg, D. E. and Deb, K., A comparison of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms 1 (FOGA-1), pp. 69-93, 1991.
 [29]Goldberg, D. E., Korb, B. And Deb, K.,Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3(5), pp. 493-530, 1989.
 [30]Hansen, N. and Ostermeier, A., “Adapting arbitrary normal mutation distributions in evolution strageties: The convariance matrix adaptation.” In Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 312-317, 1996.
 [31]Hansen, N. and Ostermeier, “Completely Derandomized Self-Adaptation in Evolution Strategies,” Evolutionary Computation 9(2), 159-195, 2001.
 [32]Higuchi, T., Tsutsui, S., and Yamamura, M., “Theoretical analysis of simplex crossover for real-coded genetic algorithms.” In Schoenauer, M. et al., editors, Parallel Problem Solving from Nature (PPSN-VI), pages 365–374, Springer, Berlin, Germany, 2000.
 [33]Holland, J. H., “Outline for a logical theory of adaptive systems,” J. Assoc. Comput. Mach., vol. 3, pp. 297–314, 1962.
 [34]Holland, J. H., Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of Michigan Press, 1975.
 [35]Holland, J. H. and Reitman, J. S., “Cognitive systems based on adaptive algorithms,” in Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth, Eds. New York: Academic, 1978.
 [36]Koza, JR., Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STANCS-90-1314, Department of Computer Science, Stanford University, June 1990.
 [37]Koza, JR., Genetic Programming. Cambridge, MA: MIT Press, 1992.
 [38]Koza, John R., Bennett, Forrest H. III and Andre, David, Classifying proteins as extracellular using programmatic motifs and genetic programming, Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, pp. 212-217, 1998.
 [39]Mitsuo Gen, Runwei Cheng, Genetic Algorithms and Engineering Design, Wiley, New York, 1997.
 [40]Ono, I. and Kobayashi, S., “A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover.” In Bäck, T., editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA-7), pages 246–253, Morgan Kaufmann, San Francisco, California, 1997.
 [41]Pierreval, H., Caux, C., Paris J.L. and Viguier, F., “Evolutionary Approaches to the Design and Organization of Manufacturing Systems,” Computers & Industrial Engineering, 44, pp. 339-364, 2003.
 [42]Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart, Germany: Frommann-Holzboog, 1973.
 [43]Rechenberg, I., Evolutionstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.
 [44]Schwefel, H.-P., “Kybemetische evolution als strategie der experimentellen forschung in der strmungstechnik,” Diploma thesis, Technical Univ. of Berlin, 1965.
 [45]Schwefel, H.-P., Numerical Optimization of Computer Models. Chichester: Wiley, 1981.
 [46]Schwefel, H.-P. “Collective intelligence in evolving systems,” in W. Wolff, C. J. Soeder and F. Drepper (Eds), Ecodynamics – Contributions to Theoretical Ecology, pp. 95-100. Berlin: Springer, 1987a.
 [47]Schwefel, H.-P., Evolution and Optimum Seeking. New York: Wiley, 1995 (Sixth-Generation Computer Technology Series).
 [48]Schwefel, H.-P., Evolution and Optimum Seeking, Wiley , New York, 1995.
 [49]Schwefel, H.-P. and Bäck, T. Artifical evolution: How and why? In D. Quagliarella, J. Périaux, C. Poloni and G. Winter (Eds), Genetic Algorithms an Evolution Strategies in Engineering an Computer Science: Recent Advances and Industrial Applications, pp. 1-19. Chichester, UK: Wiley, 1998.
 [50]Schwefel, H.-P.,and Rudolph, G., “Contemporary evolution strategies,” in Advances in Artificial Life. 3rd Int. Conf. on Artificial Life (Lecture Notes in Artificial Intelligence, vol. 929), F. Mor´an, A. Moreno, J. J. Merelo, and P. Chac´on, Eds. Berlin, Germany: Springer, 1995, pp. 893–907.
 [51]Syswerda, G., “Uniform crossover in genetic algorithms,” Proceedings of the 3rd International Conference on Genetic Algorithms, pp.2-9, 1989.
 [52]Yen, J. and B. Lee, ”A simplex genetic algorithm hybrid”, IEEE, pp. 175-180, 1997.
 [53]Yen, J., J. C. Liao, B. Lee, and D. Randolph, “A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method”, IEEE Transactions On Systems. Man, and Cybernetics, pp. 173-191, 1998.
 
 |