跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊翰
研究生(外文):CHUN-HAN HUANG
論文名稱:以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑
論文名稱(外文):Synthesis of nano-scale and submicron-scale acrylic type of core-shell rubber additives by conventional and RAFT living free radical emulsion polymerizations for unsaturated polyester, vinyl ester, and epoxy resins
指導教授:黃延吉
指導教授(外文):Yan-Jyi Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:373
中文關鍵詞:不飽和聚脂核殼型橡膠環氧樹脂乙烯基酯樹脂種子乳化聚合可逆加成斷裂鏈轉移
外文關鍵詞:unsaturated polyester resin (UP)core-shell rubber(CSR)epoxy resin (EPR)vinyl ester resin (VER)seeded emulsion polymerizationsreversible addition-fragmentation chain transfer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:940
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文是探討以乳化聚合法合成具有不同奈米級與次微米級顆粒大小和不同外殼組成的核殼型橡膠(CSR)、反應型微膠顆粒(RM)、以RAFT聚合法採用無界面活性劑乳化聚合法合成之CSR、及以RAFT聚合法採用自發性相反轉聚合法合成之CSR添加劑,以作為不飽和聚酯樹脂(UP),環氧樹脂(EPR)及乙烯基酯樹脂(VER)的抗體積收縮劑(LPA)及增韌劑。吾人並合成兩種傳統不同化學結構之UP,包括MA-PG型、MA-PA-PG型UP,及vinyl ester resin (VER)與環氧樹脂(EPR),進而設計出具不同相溶性之苯乙烯(St)/UP(或VER)/CSR或EPR/DDM/CSR三成份系統。
吾人先以半批次進料方式聚合丙烯酸正丁酯(BA),形成PBA軟質核心,再以批次進料方式聚合甲基丙烯酸甲酯(MMA),形成PMMA硬質外殼,CSR之外殼並且不加或加入交聯劑(EGDMA)進行改質,以合成外殼未交聯或交聯之PBA/PMMA核殼型橡膠。另外,CSR之外殼吾人亦以甲基丙烯酸環丙氧酯(Glycidyl methacrylate, GMA)或甲基丙烯酸(methacrylic acid, MAA) 共單體改質,以合成出具高極性及具特殊官能基基團外殼之CSR,以增加CSR外殼之極性及與樹脂基材化學交聯之能力。吾人利用Debye’s eq.及基團貢獻法,計算出UP、EPR、VER與CSR之外殼的偶極矩,以解釋St╱UP(或VER)╱CSR或EPR/DDM/CSR三成份系在25℃及110℃下未反應前之相溶性。吾人亦利用掃描式電子顯微鏡(SEM)來觀測St╱UP(或VER)╱CSR或EPR/DDM/CSR三成份系在110℃下聚合固化後樣品破壞面的微觀型態,藉以瞭解CSR的外殼化學組成與顆粒大小對St╱UP(或VER)╱CSR或EPR/DDM/CSR三成份系在聚合固化過程中之相溶性影響。不同之CSR添加量,對St/UP(或VER)/CSR三成份系統在聚合固化過程中之相容性影響,亦在文中探討。
Synthesis of acrylic type of core-shell rubbers (CSR) with varied nano-scale and submicron-scale particle size and shell chemical composition, reactive microgel, CSR by RAFT surfactant-free, batch emulsion polymerization , and CSR by RAFT polymerization via spontaneous phase inversion process as low-profile additives (LPA) and tougheners for unsaturated polyester resins (UP) ,epoxy resin (EPR) and vinyl ester resin (VER) have been investigated . Two types of conventional nsaturated polyester resin with different chemical structures, namely, MA-PG type of UP and, MA-PA-PG type of UP, epoxy resin (EPR) and vinyl ester resin (VER) ,have also been synthesized so that styrene (St) /UP(or VER) /CSR or EPR/DDM/CSR ternary systems with different miscibility can be designed.
In the synthesis of the core-shell rubber, a semi-batch process was used to synthesize the soft core, which was made from poly(butyl acrylate) (PBA) , whereas a batch process was to employed to synthesize the hard shell , which was composed of poly(methyl methacrylate) (PMMA) . Also, the shell of the CSR was modified with or without a crosslinking agent, ethylene glycol dimethacrylate (EGDMA). In addition, the shell of CSR has also been modified by introducing glycidyl methacrylate(GMA) or methacrylic acid(MAA) as a comonomer to both increase the molecular polarity and provide the specific functionality for the shell of the CSR. By using Debye’s equation and the group contribution method, the dipole moments of UP、VER、EPR and the shell component of the CSR can be calculated, which can then explain the phase characteristics of the St/UP(or VER)/CSR and the EPR/DDM/CSR ternary system prior to the reaction at 25℃ and 110℃ . Also , the effect of the shell composition of CSR and CSR particle size on the compatibility of the St/UP(or VER)/CSR and EPR/DDM/CSR ternary system during the cure has been investigated by the cured sample morphology as observed by scanning electron microscopy (SEM) . The effects of CSR content on the compatibility of different St/UP(or VER)/CSR and EPR/DDM/CSR ternary systems during the cure have been dealt with as well.
目錄

中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XIV

第一章 緒論 1

1-1 簡介 1
1-2 不飽和聚酯之合成 6
1-3 環氧樹脂(EPR)之合成 7
1-4 乙烯基酯樹酯(VER)之合成 8
1-5 不飽和聚酯樹脂(UP)與苯乙烯(St)之交聯共聚合反應 9
1-6 種子乳化聚合反應與複合乳膠顆粒的應用及製備 14
1-7 反應性微膠(Reactive microgel,RM)之合成 15
1-8 無乳化劑調控苯乙烯的自由基乳化聚合利用RAFT法
使用雙苯甲基三硫代碳酸酯當作鏈轉移試劑及丙烯酸當作共單體:
批式和自發性相反轉程序 16
1-9 苯乙烯(St)/不飽和聚酯(UP)/抗收縮劑(LPA)三成份系統之相容性 17
1-10 研究範疇 18

第二章 文獻回顧 20

2-1 不飽和聚酯(UP)之合成 20
2-2 環氧樹脂(epoxy resin,EPR)之合成 22
2-3 乙烯基酯樹脂(Vinyl Ester Resin,VER) 之合成 23
2-4 乳化聚合法 29
2-5 自由基聚合反應 37
2-6 無乳化劑乳化聚合反應與機構 40
2-7 活性自由基聚合法 43
2-8 原子轉移自由基聚合法(ATRP) 45
2-9 穩定自由基聚合法(SFRP) 47
2-10 可逆加成-斷裂鏈轉移聚合法(RAFT) 49
2-11 乳液的安定性 52
2-12 共聚合反應機構與控制共聚合體組成 57
2-13 苯乙烯╱不飽和聚酯╱抗收縮劑三成份系之相溶性 61
2-14 St╱UP(或VER)╱核殼型橡膠(CSR)三成份系之相溶性 64

第三章 實驗方法及設備
3-1 原料 65 3-1-1 不飽和聚酯樹脂的合成原料 65
3-1-2 奈米級與次微米級核殼型橡膠之合成原料 68
3-1-3 環氧樹脂與乙烯基酯樹脂的合成原料 79
3-1-4 反應性微膠的合成原料 82
3-1-5 RAFT聚合法之鏈轉移試劑DBTTC(dibenzyltrithiocarbonate)
之合成原料 84
3-1-6 以RAFT聚合法合成之CSR之合成原料 85

3-2 實驗儀器 89
3-2-1 UP及CSR之合成及鑑定設備 89
3-2-2 Epoxy及VER(Vinyl Ester Resin)之合成設備 94
3-2-3 反應性微膠之合成設備 97
3-2-4 以RAFT聚合法合成之CSR之合成設備 99

3-3 實驗步驟 101
3-3-1 不飽和聚酯之合成 101
3-3-2 UP分子量之測定-末端基滴定法 104
3-3-3 奈米級核殼型橡膠之合成 107
3-3-4 次微米級核殼型橡膠之合成 110
3-3-5 EPR(Epoxy Resin)環氧樹脂之合成 113
3-3-6 環氧樹脂之環氧當量測定 114
3-3-7 VER(Vinyl Ester Resin)之合成 116
3-3-8 VER未反應酸含量之測定-末端基滴定法 118
3-3-9 VER中未反應環氧基團含量之測定-末端基滴定法 120
3-3-10 反應性微膠之合成 121
3-3-11 RAFT聚合法之鏈轉移試劑DBTTC(dibenzyltrithiocarbonate)
之合成 123
3-3-12 無介面活性劑乳化聚合 125
3-3-13 自發性相反轉 128
3-3-14 單體的純化 131
3-3-15 轉化率的測定 132
3-3-16 乳液粒徑的測定 133
3-3-17 CSR粉末的製備 133
3-3-18 核殼型橡膠上環氧基團的定量 134
3-3-19 相對分子量及分子量分佈之測定 134
3-3-20 核磁共振光譜之測定 135
3-3-21 玻璃轉移溫度(Tg) 135
3-3-22 SEM微觀結構 135
3-3-23 相分離之測定分析 136

第四章 結果與討論 138

4-1 樹脂之合成 138
4-1-1 MA-PG型及MA-PA-PG型之UP樹脂的合成 138
4-1-2 環氧樹脂的合成 145
4-1-3 乙烯基酯樹脂(VER)之合成 146
4-1-4 MA-PG及MA-PA-PG型UP聚縮合期間之副反應(ordelt reaction) 150
4-2 樹脂之鑑定分析 151
4-2-1 MA-PG及MA-PA-PG型UP之鑑定分析 152
4-2-2 雙酚A型環氧樹脂(EPR)及乙烯基酯樹脂(VER)之鑑定分析 153
4-2-3 UP樹脂、環氧樹脂(EPR)與乙烯基酯樹脂(VER)之NMR分析 182
(1) MA-PG型之UP之NMR分析 182
(2) MA-PA-PG型之UP之NMR分析 184
(3) 雙酚A環氧樹脂之NMR分析 186
(4) 乙烯基酯樹脂(VER)型UP之NMR分析 188
4-3 合成樹脂時注意事項 189
4-3-1 合成MA-PG型及MA-PA-PG型UP時注意事項 189
4-3-2 合成環氧樹脂時注意事項 192
4-3-3 合成乙烯基酯樹脂(VER)時注意事項 193
4-4 奈米級核-殼型橡膠增韌劑(CSR)之合成 194
4-5 次微米級核-殼型橡膠增韌劑(CSR)之合成 205
4-6 核-殼型橡膠增韌劑(CSR)之共聚合組成 210
4-7 奈米級與次微米級核-殼型橡膠增韌劑(CSR)之NMR分析 217
4-8 奈米級與次微米級BA/MMA-EGDMA-GMA型CSR環氧基團含量鑑定 247
4-8-1 奈米級BA/MMA-EGDMA-GMA型CSR環氧基團含量鑑定 247
4-8-2 次微米級BA/MMA-EGDMA-GMA型CSR環氧基團含量鑑定 249
4-9 奈米級及次微米級CSR之玻璃轉移溫度(Tg) 251
4-10 利用TEM觀測CSR乳液 257
4-11 合成CSR時注意事項 266
4-12 反應性微膠之合成 267
4-13 合成反應性微膠之注意事項 269
4-14 RAFT聚合法之鏈轉移試劑DBTTC之鑑定分析 270
4-15 以RAFT聚合法合成之CSR之鑑定分析 276
4-16 St/UP(或VER)/CSR及EPR/DDM(或DDS)/CSR三成份系之相溶性 293
4-16-1 樹脂與CSR外殼之分子極性 293
4-16-2 EPR以基團貢獻法計算其偶極矩 298
4-16-3 VER以基團貢獻法計算其偶極矩 303
4-16-4 E0型CSR以基團貢獻法計算其偶極矩 305
4-16-5 E1型CSR以基團貢獻法計算其偶極矩 307
4-16-6 G1、G2、G3型CSR以基團貢獻法計算其偶極矩 309
4-16-7 M1、M2、M3型CSR以基團貢獻法計算其偶極矩 313
4-17 Phase Characteristics 330
4-18 Epoxy/DDM/CSR三成份系統 335
4-18-1 Epoxy/DDM/CSR三成份系統在SEM下的微觀型態結構 335
4-19 St/VER/CSR三成份系統 350
4-19-1 St/VER/CSR三成份系統在SEM下的微觀型態結構 350

第五章 結論 370

參考文獻 373
1.R.B. Burns , “Polyester Molding Compounds ,” Marcel Dekker , New York , (1982).
2.H.G. Kia , ed., “Sheet Molding Compound : Science and Technology ,” Hanser Publishers , New York , (1993).
3.E.J. Bartkus and C. H. Kroekel, J. Appl. Polym. Sci., Appl. Polym. Symp., 15, 113 (1970).
4.Y.J. Huang, T.S. Chen, J.G. Huang and F.H. Lee, J. Appl. Polym. Sci., 89, 3336(2003).
5.V.A. Pattison, R.R. Hindersinn and W.T. Schwartz, J. Appl. Polym. Sci., 18, 2763 (1974).
6.W. Funke, R. Kolitz, and W. Straehle, Makromol. Chem., 180, 2797 (1979).
7.W. Funke, and K. Walther, Polymer J., 17, 1, 179 (1985).
8.W. Funke, Br. Polym. J., 21, 107 (1989).
9.L. Liang and W. Funke, Macromolecules, 29 ,8685 (1996).
10.郭庭蓁, 碩士論文, 國立台灣科技大學, 2006.
11.J.P. Dong, J.H. Lee, D.H. Lai and Y.H. Huang, J. Appl. Polym. Sci., 98, 246(2005).
12.E. Martuscelli, P. Musto, G. Ragosta, G. Scarinz and E. Bertotti, J. Polym. Sci., Part B: Polym. Phys., 31, 619 (1993).
13.S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem. Res.,33,2778 (1994).
14.The B.F. Goodrich Co., WO93/21274 (Oct. 28, 1993).
15.Crc for Polymers Pty. Ltd, WO97/43339 (Nov. 20,1997).
16.J. Wang, M. Lee, X. Yu, J. Ji and K. Yao, J. Mater. Sci. Technol., 20, 5, 522 (2004).
17.J. Wang, M. Lee, K. Yao, J. Ji and X. Yu, J. Mater. Sci. Technol., 20, 6, 787 (2004).
18.J.Y. Qian, R. A. Pearson, V. L. Dimonie and M. S. El-Aasser, J. Appl. Polym. Sci., 58, 439 (1995).
19.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 69, 2069 (1998).
20.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 70, 2313 (1998).
21.C.L Lee, K.R Lin and W.Y. Chiu, J. Appl. Polym. Sci., 51, 1621 (1994).
22.梁景冠,碩士論文,國立台灣科技大學,2003.
23.Y.J. Huang, J.H. Wu, J.G. Liang, M.W. Hsu, and J.K. Ma, J. Appl. Polym. Sci, 107, 939 (2008).
24.C.B. Arends, ed., “Polymer Toughening,” Marcel Dekker, New York, 1996.
25.The Dow Chemical Company , PCT Int.Appl.WO986/07067(Dec. 4, 1986).
26.朱祈佑,碩士論文,國立台灣科技大學, 2007.
27.Y.S.Yang and L.J.Lee,Polymer,29,1793(1988).
28.K.Horie,I.Mita,and H.Kambe,J.Polym.Sci.PartA-1:Polym.
Chem.,7,2561(1969).
29.江文慶,碩士論文,國立台灣科技大學,1996.
30.Y.C. Chen , V. L. Dimonie , and M.S. El-Aasser , J. Appl.
Polym. Sci. , 42 , 1049(1991).
31.J.Berg.D.C.Sundberg, and B.Kronberg , Polym. Mater. Sci. Eng. , 54 , 367 , (1986).
32.D.C.Sundberg , A.J.Cassasa , J.Pantazopoulos , M.R.Muscato ,B.K.Kronberg , and J.Berg , J. Appl. Polym. Sci. , 41 , 1425(1990).
33.W Funke. Brit. Polymer. J.,21, 107,(1989).
34.L Liang, and W Funke. Macromolecules, 29, 8650,(1996).
35.A.S.Djiuard,M.S. Thesis, National Taiwan University of
science and Technology, 2008.
36.S. Fre’al-Saison, M. Save, C. Bui, B.Charleux, and S.Magnet,Macromolecules, 39, 8632 (2006).
37.Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 323 (1995).
38.Y. J. Huang and L. D. Chen, Polymer, 39, 7049 (1998).
39.Y. J. Huang and W. C. Jiang, Polymer, 39, 6631 (1998).
40.J. Simitzis, Eur. Polym. J., 24, 87 (1988).
41.R. Subramaniam and F. J. McGarry, 48th Annual Conference,
Composites Institute, SPI, Session 14-C (Feb. 8-11, 1993).
42.B. R. Bogner and M. Kallaur, in “Sheet Molding Compounds:
Science and Technology,” ed. H. G. Kia, Hanser, New York
, Ch.2, 1993.
43.Amoco Chemical Co., “Processing Unsaturated Polyesters
Based on Amoco Isophthalic Acid,” IP-43b, 1989.
44.E. F. Cariston and G. B. Johnson, U. S. Patent 2, 904, 533,1959.
45.N. Agarwal, I. K. Varma, and V. Choudhary, J. Appl. Polym.
Sci., 99, 2424(2006).
46.B. Gawdzik, and T. Matynia, J. Appl. Polym. Sci., 81, 2062(2001).
47.P. Penczek, J. Sodhi, and R. Osrysz, J. Appl. Polym. Sci., 101, 2627(2006).
48.P. F. Bruins, Ed., “Unsatruated Polyester Technology, ” Gordon and Breach, New York, 1976,p315-342.
49.彭俊昇, 碩士論文,國立台灣科技大學,2000.
50.G. Odian,”Principle of Polymerization ,”3rd
Edition,Wiley,New York,1991.
51.廖平喜,聚合物化學,高立圖書有限公司,台北, 1997.
52.H.R. Allcock and F.W. Lampe.,”Contemporary Polymer Chemistry”,2nd Ed., Prentice Hall, Englewood Cliffs, New Jersey,
p. 50, 1990.
53.吳嘉鴻, 碩士論文, 台灣科技大學, 2003.
54.J.W.Vanderhoff, “Science and Technology of Polymer
Colloids”, G. W.Poehlein, H.O. and J. W.Goodwin Eds., Vol.I.,1983.
55.V.I.Yeliseyeva, in ”Emulsion Polymerization”, chap.7, Academic Press,New York,1982.
56.H.One and H.Saeki, Br.Polym.J, 7, 21(1975)
57.M.S.Juang and I.M.Krieger, J.Polym.Sci., Polym.Chem.Ed.
,14, 2089(1976).
58.S.A.Chen and H.S.Chang, J.Polym.Sci., Polym.Chem.Ed., 23,
2615(1985).
59.D.H.Napper and A.G.Parts, J.Polym.Sci., 16, 113(1962).
60.R.M.Fitch, Br.Polym.J., 5, 467(1973).
61.J.H.Bayendale, M.G.Evans and J.K.Kilham, Trans.Faraday
Soc., 42, 688(1946).
62.J.W.Goodwin, J.Hearn, C.C.Ho and R.H.Ottewill, Br.Polym.
J., 5, 347(1973).
63.張容瑋, 碩士論文, 台灣科技大學, 2008.
64.M ,Szwarc.Nature(London),178,1168(1956).
65.T. Otsu, M.Yoshida, Makromol Chem, Rapid Commun., 3,127(1982).
66.K.Matyjaszewski, J.Xia, Chem. Rev., 101, 2921(2001).
67.J.S.Wang,K.Matyjaszewski, ,J.Am.Chem.Soc.,117,5614(1995).
68.M.Kamigaito, T.Ando,;M. Sawamoto, Chem. Rev., 101, 3689 (2001).
69.D. H. Solomon, E. Rizzardo and P. Cacioli, US Patent 4, 581, 429,1985.
70.M. K. Georges, R. P. N. Veregin, P. M. Kazmaier and G. K. Hamer, Macromolecules, 26, 2987 (1993).
71.R.Francis,D.Taton,J.Logan,P.Masse,Y.Gnanou,and R.S.Duran, Macromolecules,86,8253(2003).
72.T.P.Le,G.Moad,E.Rizzardo, and S.H.Thang,PCT Int.Appl.WO9801478 A1980115,1998.
73.J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thong, Macromolecules, 31, 5559 (1998).
74.P.Takolpuckdee, C. A.Mars, S.Perrier, Org. Lett., 7, 3449(2005).
75.Y.Tsujii, M.Ejaz, K.Sato, A.Goto, and T.Fukuda, Macromolecules , 34, 8872(2001).
76.D.L.Patton, and R.C.Advincula, Macromolecules, 39, 8674 (2006).
77.R.Narain, and S.P.Armes, Macromolecules,36,4675(2003).
78.M. H.Stenzel, T. P.Davis, and A. G.Fane, J Mater Chem, 13, 2090(2003).
79.許繼強, 碩士論文, 台灣科技大學, 2000.
80.A. S. Kablnov, K. N. Makarov, A. V. Pertzov and E. D.
Shchukin, J. Colloid Interface Sci., 138, 98 (1990).
81.A. S. Kabalnov, A. V. Pertzov and E. D. Shchukin, Colloids
Surfaces, 124, 19 (1987).
82.P. Taylor, Colloids Surfaces A: Phys. Chem. Eng. Aspects,
99, 175 (1995).
83.A. S. Kabalnov and E. D. Shchukin, Adv. in Colloid Interface
Sci, 138, 69 (1992).
84.W. L. Grimm, T. I. Min, M. S. El-Aasser and J. W. Vanderhoff,
J. Colloid Interface Sci., 94, 531 (1983).
85.Y. T. Choi, “Formation and Stabilization of Miniemulsions
and Latexes”, Ph. D. Dissertation, Lehigh University,1986.
86.W. L. Grimm, “The Use of Mixed-Emulsifier Systems in the
Preparation and Stabilization of Emulsions and Latexes”,
M. S. Thesis, Lehigh University,1986.
87.M. S. El-Aasser, C. D. Lack, Y. T. Choi, T. I. Min, J. W.
Vanderhoff and F. M. Fowkes, Colloids Surfaces, 12, 79 (1984).
88.S.L. Rosen, “Fundamental Principles of Polymeric
Materials,” 2nd Ed., Wiley, New York, 1993.
89.蔡明洲, 碩士論文, 台灣科技大學, 2006.
90.J. P. Lecointe, J. P. Pascault, L. Suspene, and Y. S. Yang,
Polymer, 33, 3223 (1992).
91.L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 33, 1593 (1991).
92.Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 305 (1995).
93.Y. J. Huang, C. J. Chu, and J. P. Dong, J. Appl. Polym. Sci.,78, 543 (2000).
94.W. Ming, F.N. Jones, and S. Fu, Macromol. Chem. Phys. 199, 1075 (1998).
95.A. Hammond, P.M. Budd, and C. Price, Progr. Colloid Polym.
Sci,113, 142(1993).
96.Senyek, M. L.; Kulig, J. J.; Parker D. K. The Goodyear Tire
and Rubber Co. US Patent 6,369,158, 2002.
97. V. Nelliappan, A. Klein, E.S. Daniels, and I.E. Roberts, J. Polym. Sci. Part A, Vol34, 3183-3190(1996).
98. E.A. Collins, J. Bares, F.W. Billmeyer, “Experiments in Polymer Science”, J. Wiley&Sons, N.Y., p.334,1973.
99. 阮峻維, 碩士論文, 國立台灣科技大學, 1999.
100.K. Landfester, C. Boeffel, M.Lamble, H.W. Spiess, Ecole
d’Application des Hauts Polymers/CNRS, 29, 5972-5980(1996).
101.D.W.V. Krevlen, ”Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions”, 3rd Ed., Elserier, Amsterdam,1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝二氧化矽顆粒、官能基化之氧化石墨烯、官能基化之脫層石墨烯奈米層板、高分子接枝之氧化石墨烯及高分子接枝之脫層石墨烯奈米層板對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
2. 官能基化之氧化石墨烯及脫層石墨烯奈米層板之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、官能基化之氧化石墨烯及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之體積收縮、機械性質及微觀型態結構之影響
3. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
4. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝之蒙特納石黏土及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
5. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠添加劑
6. 奈米級及次微米級核殼型橡膠、無機/有機混成核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響
7. 奈米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響研究
8. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒及蒙特納石黏土對不飽和聚酯、乙烯基酯及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、體積收縮、機械性質及微觀型態結構之影響研究
9. 以RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級之高分子核殼型添加劑
10. 奈米級無機矽膠粒子之合成及以RAFT活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級無機矽膠/有機高分子核殼型顆粒添加劑
11. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之微觀型態結構、体積收縮、內部可染色性及機械性質之影響研究
12. 以RAFT活自由基聚合法合成用於不飽和聚脂、乙烯基脂及環氧樹脂之奈米級無機矽膠/有機高分子核殼型顆粒添加劑
 
無相關期刊