跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 17:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:封中興
研究生(外文):Chung-Hsing Feng
論文名稱:以建模為基礎的論證教學模式在國中自然科的教學成效之研究
論文名稱(外文):A Research on the Teaching Effectiveness by Using “Modeling-Based Argumentation Teaching Model” in Junior High School Science Class
指導教授:洪振方洪振方引用關係
指導教授(外文):Jeng-Fung Hung
學位類別:博士
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:182
中文關鍵詞:建模論證以建模為基礎的論證教學模式教學成效
外文關鍵詞:modelingargumentationmodeling-based argumentation teaching modelteaching effectiveness
相關次數:
  • 被引用被引用:2
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:1
基於「科學即為建模」、「科學即為論證」、「學校的科學教育,應當反映當代科學實踐的理性與文化傳統」等論點,本研究發展「以建模為基礎的論證教學模式」。以準實驗研究法進行設計,研究對象為八年級學生,實驗組及對照組分別用「以建模為基礎的論證教學模式」及「教導的論證教學模式」進行教學,以國中自然與生活科技第三冊第四章「光學」作為教學單元。以「對科學模型的理解量表、論證能力測驗卷」蒐集資料進行統計考驗,探討上述教學模式在國中自然科的教學成效。研究結果發現:
一、 在對科學模型與建模的理解方面:
相依樣本t考驗及單因子共變數的分析結果,實驗組表現優於對照組,均達顯著差異,具有中度或大的效果量。
二、 在論證能力表現方面:
相依樣本t考驗及單因子共變數的分析結果,實驗組平均分數高於對照組,均達顯著差異,可達中度或大的效果量。
三、 學生對科學模型及建模的理解情況與其論證能力表現情況的相關性:
在教學後,實驗組在此兩變項的關係從低度正相關提升至中度正相關,而對照組仍然是低度正相關。
四、 對科學模型及建模的理解情況,不同理解程度的實驗組學生,其論證能力的表現情況:
單因子變異數的分析結果,以Schefee法進行事後比較,整體而言,在光學單元對科學模型與建模的理解程度越高,論證能力表現越佳。

依據上述研究結果,MBA教學模式是一個可運作的教學模式,可用於國中自然與生活科技的課程中,具有提升八年級學生在「對科學模型及建模的理解、論證能力表現」等面向的教學成效。
Base on the viewpoints of “Science as model building”, “Science as argument”, and “School science reflects the intellectual and cultural traditions that characterize the practice of contemporary science”, this research developed a teaching model which was named “Modeling-Based Argumentation (MBA) teaching model”. A quasi-experimental design was used in this study. The research samples were 8th graders. The experimental group was instructed in the MBA teaching model, while the contrast group was instructed in the “Didactic Argumentation (DA) teaching model.” The contents of teaching material in both groups were the Junior High School Science Textbook Volume Ⅲ Chapter 4 “Optics”. The instruments “Students’ Understanding of Science Models (SUMS)” and “Achievement Test of Students’ Argumentation Ability (ATSAA)” were used to collect data and analyzed as students’ learning effectiveness. The research results were as follows:
1. The results of SUMS: The paired-samples t-test and the ANCOVA analysis showed that the experimental group was significantly better than contrast group, and the effect sizes were moderate or large.
2. The results of ATSAA: The paired-samples t-test and the ANCOVA analysis showed that the experimental group was significantly better than contrast group, and the effect sizes were moderate or large.
3. The correlation between SUMS and ATSAA: After the experimental treatment, the correlation of SUMS and ATSAA of the experimental group raised to moderate positive correlation, while the correlation of SUMS and ATSAA of the contrast group still remained low positive correlation.
4. The Argumentation Ability Performance of different subgroups in the experimental group: In the results of the ANOVA analysis, the Schefee method showed that the more the students understood about scientific models and modeling, the better the students performed in ATSAA.

According to the results of this research, the MBA teaching model is workable and can be used in the junior high school science class to enhance the 8th graders’ Learning Achievements in SUMS and ATSAA.
目錄
中文摘要 I
Abstract II
目錄 III
表次 V
圖次 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究的重要性 6
第三節 研究目的與研究問題 12
第四節 名詞釋義 14
第五節 研究範圍與限制 18
第二章 文獻探討 21
第一節 模型及建模在科學中扮演的功能與角色 21
第二節 模型及建模在科學教學中扮演的功能與角色 29
第三節 論證在科學中扮演的功能與角色 39
第四節 論證在科學教學中扮演的功能與角色 45
第五節 本研究的理論架構 54
第三章 研究方法 61
第一節 研究設計 61
第二節 研究對象 64
第三節 教學單元與活動進行方式 66
第四節 研究工具 75
第五節 研究流程 83
第六節 資料處理與分析方式 86
第四章 研究結果 91
第一節 學生對科學模型及建模的理解情況 91
第二節 學生的論證能力表現情況 110
第三節 學生對科學模型及建模的理解情況與其論證能力表現情況的相關性 119
第四節 對科學模型及建模的理解情況,不同理解程度的實驗組學生,
其論證能力的表現情況 123
第五節 學生對科學模型及建模的理解情況以及學生的論證能力表現
情況之組型(patterns) 128
第五章 結論與建議 143
第一節 研究結果與結論 143
第二節 建議 149
參考文獻 151
一、中文部分 151
二、英文部分 152
附錄 158
附錄一 本研究的教學活動之教案 158
附錄二 學生對科學模型的理解量表 168
附錄三 論證能力測驗卷(前測) 171
論證能力測驗卷(後測) 176
附錄四 對科學模型及建模的看法問卷 181


表次
表2-5-1 建模表現期望表 59
表2-5-2 論證表現期望表 59
表3-1-1 在本研究中所涉及的變項 61
表3-1-2 本研究的設計模式 62
表3-2-1 八年級上學期第一次自然科段考成績的描述性統計資料 64
表3-2-2 八年級上學期第一次自然科段考成績的獨立樣本t檢定摘要表 64
表3-2-3 個案教師的背景資料 65
表3-3-1 教師手冊建議的教學時數與教學目標 66
表3-3-2 實驗組的教學活動流程(以「4-1光的直進」為例) 67
表3-3-3 對照組的教學活動流程(以「4-1光的直進」為例) 74
表3-4-1 「SUMS量表」原量表與預試樣本的α值 77
表3-4-2 ATSAA的題目與要測量的科學構念的範例 78
表3-4-3 ATSAA的評分標準(論證能力表現層次) 79
表3-6-1 研究問題與研究工具及資料處理分析方式 86
表4-1-1 實驗組學生在教學前對SUMS各向度的看法之人數百分比 92
表4-1-2 實驗組學生在教學後對SUMS各向度的看法之人數百分比 93
表4-1-3 實驗組在教學前、後看法改變的人數百分比 95
表4-1-4 實驗組在教學前、後,SUMS量表得分的描述性統計摘要 97
表4-1-5 實驗組在教學前、後SUMS量表的「相依樣本t考驗」摘要 97
表4-1-6 對照組在教學前對SUMS各向度的看法之人數百分比 98
表4-1-7 對照組在教學後對SUMS各向度的看法之人數百分比 100
表4-1-8 對照組在教學前、後看法改變的人數百分比 102
表4-1-9 對照組教學前、後SUMS量表得分的描述性統計摘要 104
表4-1-10 對照組在教學前、後SUMS量表的「相依樣本t考驗」摘要 104
表4-1-11 SUMS總量表的「組內迴歸係數同質性考驗」摘要 105
表4-1-12 SUMS總量表的描述性統計摘要 105
表4-1-13 SUMS總量表的「單因子共變數分析」摘要 106
表4-1-14 SUMS各分量表的「組內迴歸係數同質性考驗」摘要 106
表4-1-15 SUMS各分量表的「單因子共變數分析」摘要 107
表4-1-16 SUMS各分量表的描述性統計摘要 107
表4-2-1 實驗組在教學前ATSAA總分及每題平均得分 110
表4-2-2 實驗組在教學後ATSAA總分及每題平均得分 111
表4-2-3 實驗組在教學前、後ATSAA得分的描述性統計摘要 111
表4-2-4 實驗組在教學前、後ATSAA的「相依樣本t考驗」摘要 112
表4-2-5 對照組在教學前ATSAA總分及每題平均得分 113
表4-2-6 對照組在教學後ATSAA總分及每題平均得分 113
表4-2-7 對照組在教學前、後ATSAA得分的描述性統計摘要 113
表4-2-8 對照組在教學前、後ATSAA的「相依樣本t考驗」摘要 114
表4-2-9 ATSAA的「組內迴歸係數同質性考驗」摘要 115
表4-2-10 ATSAA的描述性統計摘要 115
表4-2-11 ATSAA的「單因子共變數分析」摘要 116
表4-2-12 ATSAA各子單元的「組內迴歸係數同質性考驗」摘要 116
表4-2-13 ATSAA各子單元的描述性統計摘要 117
表4-2-14 ATSAA各子單元的「單因子共變數分析」摘要 117
表4-3-1 對照組學生在前測「對科學模型及建模的理解情況」與「論證能力表現情況」的Pearson相關統計摘要表 120
表4-3-2 對照組學生在後測「對科學模型及建模的理解情況」與「論證能力表現情況」的Pearson相關統計摘要表 120
表4-3-3 實驗組學生在前測「對科學模型及建模的理解情況」與「論證能力表現情況」的Pearson相關統計摘要表 121
表4-3-4 實驗組學生在後測「對科學模型及建模的理解情況」與「論證能力表現情況」的Pearson相關統計摘要表 121
表4-4-1 單因子變異數分析的描述性統計資料摘要 123
表4-4-2 單因子變異數分析同質性考驗結果的摘要 124
表4-4-3 單因子變異數分析摘要 125
表4-4-4 Schefee法的事後比較結果摘要 126
表4-5-1 SUMS各分量表的每一題的平均得分與對應的看法 128
表4-5-2 實驗組在教學前、後,ATSAA每題平均得分代表的論證能力表現層次 135
表4-5-3 對照組在教學前、後,ATSAA每題平均得分代表的論證能力表現層次 135

圖次
圖1-1-1 阿基米德原理實驗圖 3
圖2-2-1「心智模型、教學模型、科學模型、表達出的模型」的交互作用架構圖 36
圖2-2-2 在課室的學習過程中,模型發展的架構圖 36
圖2-3-1 在建立科學知識宣稱的歷程中,推理、理論與論證之間的交互作用的理論架構圖 41
圖2-3-2 Toulmin的論證架構 43
圖2-5-1 MBA教學模式的基本架構圖 55
圖3-3-1 運用「比較多元模型」的策略,促使模型演進的歷程 69
圖3-4-1 學生在論證能力測驗卷的作答內容的論證架構 80
圖3-5-1 研究流程圖 85
圖4-1-1 實驗組在教學前、後對MR的看法人數百分比 94
圖4-1-2 實驗組在教學前、後對ER的看法人數百分比 94
圖4-1-3 實驗組在教學前、後對ET的看法人數百分比 94
圖4-1-4 實驗組在教學前、後對USM的看法人數百分比 94
圖4-1-5 實驗組在教學前、後對CNM的看法人數百分比 95
圖4-1-6 實驗組在教學前、後,看法改變的人數百分比 96
圖4-1-7 對照組在教學前、後對MR的看法人數百分比 101
圖4-1-8 對照組在教學前、後對ER的看法人數百分比 101
圖4-1-9 對照組在教學前、後對ET的看法人數百分比 101
圖4-1-10 對照組在教學前、後對USM的看法人數百分比 101
圖4-1-11 對照組在教學前、後對CNM的看法人數百分比 102
圖4-1-12 教學前、後,看法人數百分比 103
圖5-1-1 學生進行小組討論,如何建構初始模型的情況 137
圖5-1-2 各組學生設計的初始模型的建構方式 138
圖5-1-3 各組學生測試初始模型的經過情況 139
圖5-1-4 各小組輪流發表初始模型的測試情況 140
圖5-1-5 第一、三組經過全班的對話論證後,修正的模型 141

一、中文部分
吳明隆(2007a)。SPSS統計應用學習實務:問卷分析與應用統計。台北:知城數位科技。
吳明隆(2007b)。SPSS操作與應用變異數分析。台北:五南。
周金城(2008):探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,306,10-17。
林煥祥(2008)。台灣參加PISA2006成果報告。行政院國家科學委員會專題研究成果報告。編號:NSC 95-2522-S-026-002。
林靜雯、邱美虹(2008):從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊,307,9-14。
封中興、顏志昌、洪振方(2011)。「多元模型教學模式」的教學成效之評析-以國小星象觀測單元為例。屏東教育大學學報,36,25-62。
洪振方(1994)。從孔恩異例的認知與論證探討科學知識的重建。國立臺灣師範大學科學教育研究所博士論文,未出版,台北。
洪振方(2000):近代科學的發展。台北:台灣書店。
洪振方(2003):探究式教學的歷史回顧與創造性探究模式之初探,高雄師大學報,15,641-662。
馬文蔚、唐玄之、周永平(主編)(1987):物理發展史上的里程碑。台北:凡異。
張光熙、宋加麗(2002):科學的故事。台北:好讀。
張瓊、于祺明、劉文君(1994):科學理論模型的建構。台北:淑馨。
黃台珠、熊召弟、王美芳、佘曉清、靳知勤、段曉林等(譯)(2002)。促進理解之科學教學。台北:心理。
顏志昌(2006):以多元模型為基礎的教學對學生星象單元學習之影響。高雄師範大學科學教育研究所碩士論文,未出版,高雄。


二、英文部分
Acher, A., Arca, M., & Sanmarti, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418.
American Association for The Advancement of Science(1993). Benchmarks for Science Literacy. New York: Oxford University Press.
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793.
Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93, 26-55.
Boulter, C. J., & Gilbert, J. K. (1995). Argument and science education. In P. S. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation (pp. 84-98). Clevedon, UK: Multilingual Matters.
Browne, M. N., & Keeley, S. M.(1998). Asking the Right Questions: A Guide to Critical Thinking (5th Ed.). New Jersey: Prentice Hall.
Bryce, T. G. K., & Robertson, I. J.(1985).What can they do? A review of practical assessment in science. Studies in science education, 12, 1-24.
Buckley, B. C., Gobert, J. D., Kindfield, A., Horwitz, P., Tinker, R., Gerlits, B., Wilensky, U., Dede, C., & Willett, J. (2004). Model-based Teaching and Learning with BioLogica™: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23-41.
Chang, H. P., Chen, J. Y., Guo, C. J., Chen, C. C., Chang, C. Y., Lin, S. H., & Su, W. J. (2007). Investigating primary and secondary students? Learning of physics concepts in Taiwan. International Journal of Science Education, 29(4), 465-482.
Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908.
Chinn, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37, 109-138.
Chittleborough G.D., Treagust D.F., Mamiala T.L, Mocerino M. (2005)Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.
Chiu, M. H. (2007). A National Survey of Students’Conceptions of Chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
Chiu, M. H., Guo, C. J., & Treagust, D. (2007). Assessing Students’ Conceptual Understanding in Science: An Introduction about a National Project in Taiwan. International Journal of Science Education, 29(4), 379-390.
Clement, J. (2000) Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.
Clement, J. J., & Rea-Ramirez, M. A. (Eds.). (2008). Model Based Learning and Instruction in Science. Dordrecht, Netherlands: Springer.
Coll, R. K., France, B., & Taylor, I.(2005). The role of models and analogies in science education implications from research. International Journal of Science Education, 27(2), 183-198.
Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725-749.
Doerr, H. M., & Tripp, J. S. (1999) Understanding How Students Develop Mathematical Models. Mathematical Thinking and Learning, 1, 231-254
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
Fretz, E. B., Wu, H. K., Zhang, B., Krajcik, J. S., Davis, E. A., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567-589.
Giere, R. N. (1991). Understanding scientific reasoning (3rd ed.). Forth Worth, TX: Holt, Rinehart& Winston.
Gilbert, J. K. (1993) Models and modelling in science education Hatfield, Herts: Association for Science Education.
Gilbert, J. K. (1993). The role of models and modelling in science education. Presented at the 1993 Annual Conference of the National Association for Research in Science Teaching, Atlanta, GA, USA.
Gilbert, J. K. (1995). The role of models and modelling in some narratives in science learning. Presented at the Annual Meeting of the American Educational Research Association, April 18-22. San Francisco, CA, USA.
Gilbert, J. K., & Boulter, C. J. (1995) Stretching models too far. Paper presented at the annual meeting of the American Educational Research Association. San Francisco, 18-22 April.
Gilbert, J. K., & Boulter, C. J. (1998). Learning science through models and modelling. In B. Fraser & K. Tobin (eds), International Handbook of Science Education (pp.53-66). Dordrecht Netherlands: Kluwer.
Gilbert, J. K., & Boulter, C. J. (eds.) (2000). Developing Models in Science Education. Dordrecht: Kluwer.
Gobert, J. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
Gobert, J. D., O’Dwyer, L., Horwitz, P., Buckley, B. C., Levy, S. T. & Wilensky, U. (2011). Examining the Relationship Between Students’ Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry. International Journal of Science Education 33(5), 653-684.
Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991) Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
Hacking, I. (1983). Representing and Intervening. Cambridge, UK: Cambridge University Press.
Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.
Harrison, A. G., & Treagust, D. F. (2000a) A typology of school science models. International Journal of Science Education, 22, 1011-1026.
Harrison, A. G., & Treagust, D. F. (2000b) Learning about atoms, molecules and chemical bonds: a case-study of multiple model use in grade-11 chemistry. Science Education, 84, 352-381.
Hazel, E., & Baillie, C. (1998). Improving Teaching and Learning in Laboratories, Higher Education Research and Development Society of Australasia, Jamison Centre, Australia
Herrenkohl, L. R., & Guerra, M. R. (1998). Participant structures, scientific discourse, and student engagement in fourth grade. Cognition and Instruction, 16, 431-473.
Hesse, M. (1966). Models and analogies in science. Notre Dame, Indiana: The University of Notre Dame Press.
Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (2000), “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792.
Justi R.S., & Gilbert J.K. (2000) History and philosophy of science through models: some challenges in the case of the ‘atom’. International Journal of Science Education, 22, 993-1009.
Justi R.S., & Gilbert J.K.(2002) Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273-1292.
Kim, H., & Song, J. (2005) The Features of Peer Argumentation in Middle School Students' Scientific Inquiry. Research in Science Education, 36(3), 211-233.
Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337.
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824.
Kuhn, D., Shaw, V., & Felton, M.(1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287-315.
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
Lawson, A. E. (2000). How do humans acquire knowledge? and What does that imply about the nature of knowledge? Science & Education, 9, 577-598.
Lee, M. H. (1999) On models, modelling and the distinctive nature of model-based reasoning. AI Communications, 12, 127-137.
Linn, M. C., & Muilenberg, L. (1996) Creating Lifelong Science Learners: What Models Form a Firm Foundation? Educational Researcher, 25(5), 18-24.
Magnani, L. (2004). Model-based and manipulative abduction in science, Foundations of Science 9(3), 219-247.
Màrquez, C., Izquierdo, M., & Espinet, M. (2006). Multimodal science teachers' discourse in modeling the water cycle. Science Education, 90, 202-226.
McNeill, K. L. (2009). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268.
McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229.
Millar, R. (1989). Bending the evidence: The relationship between theory and experiment in science education. In R. Millar (ed) doing science: Images of science in science education (pp. 38-61). London: the Falmer Press.
National Research Council. (1996).The national science education standards. Washington, DC: National Academy Press.
Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003).What ideas-about-science should be taught in school science. A Delphi study of the expert community. Journal of Research in Science Teaching 40(7), 692-720
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020
Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182.
Rath, A., & Brown, D. E.(1996). Modes of engagement in science inquiry: A microanalysis of elementary students’ orientations toward phenomena at a summer science camp. Journal of research in science teaching, 33(10), 1083-1097.
Richmond, G., & Striley, J.(1996). Making meaning in classrooms: Social processes in small group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33(8), 839-858.
Rubinstein, M. F., & Firstenberg, I. R. (1995) Patterns of Problem Solving (2nd ed.). New Jersey: Prentice Hall.
Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers’ questions distort scientific authority? Journal of Research in Science Teaching, 20(1), 27-45.
Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93, 448-484.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55
Schauble, L., Klopfer, L. E., & Raghavan, K.(1991). Students’ transition from an engineering model to a science model of experiment. Journal of research in science teaching, 28(9), 859-882.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., O., Archer, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1(1), 59-85.
Simpson, J., & Weiner, E. (Eds.). (1989). The Oxford English Dictionary (2nd ed., Vols.1-20 ). Oxford, NY: Oxford University Press.
Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27, 317- 336.
Taylor, C. (1996). Defining science. Madison, WI: University of Wisconsin Press.
Thier M. and Daviss B.(2002). The New Science Literacy: Using Language Skills to Help Students Learn Science. Portsmouth NH: Heinemann.
Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
Treagust D. F., Chittleborough G. D., & Mamiala T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.
Treagust D. F., Chittleborough G. D.,& Mamiala T. L.(2004) Students' Understanding of the Descriptive and Predictive Nature of Teaching Models in Organic Chemistry. Research in Science Education, 34, 1-20.
Van Driel, J. H., & Verloop, N.(1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141-1153.
Van Driel, J.H., & Verloop, N.(2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science education .International Journal of Science Education, 24(12), 1255-1272.
Wang, M. N, Wu, K. C., & Huang, T. C. (2007). A study on the factors affecting biological concept learning of junior high school students. International Journal of Science Education, 29(4), 453-464.
White, R. T. (1996).The link between the laboratory and learning. International science education, 18(7), 761-774.
Windschitl, M., Thompson, J. and Braaten, M. (2008) Beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education 92, 941-967
Wotawa, F. (1999) Model-based reasoning. AI Communications, 12, 1-3.
Yen, C. F., Yao, T. W., & Mintzes, J. J. (2007). Taiwanese students’ alternative conceptions of animal biodiversity. International Journal of Science Education, 29(4), 535–553.
Yore, L. D., & Hand, B. M.(2003) Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689-725
Zambal-Saul, C. (2009). Learning to teach elementaru school science as argument. Science Education, 93, 687-719.
Zhang, B. H., Liu, X., & Krajcik, J. S. (2006). Expert Models and Modeling Processes Associated with a Computer Modeling Tool. Science Education, 90(4), 579-604
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top