跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐寧蓴
研究生(外文):Ning-Chung, Tang
論文名稱:以隨機分析法估算配電饋線中太陽能發電的最大承載容量
論文名稱(外文):A Stochastic Approach for Determining PV Hosting Capacity in a Distribution Feeder
指導教授:張文恭
指導教授(外文):G. W. Chang, Ph. D.
口試委員:劉祐任張忠良林惠民
口試委員(外文):Dr. Yu-Jen LiuDr. Chang, Chung-liangDr. Whei-Min Lin
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:太陽能承載容量隨機分析法智慧型變頻器控制電力品質指標
外文關鍵詞:Hosting capacityStochastic analysisSmart inverter controlpower quality criteria
相關次數:
  • 被引用被引用:1
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
有鑑於分佈式再生能源近年來越見顯著的重要性,太陽能發電不僅成為快速增長的再生能源,更已成為各國重視的能源議題之一。然而,隨著高滲透率的太陽能發電電源併入電網,可能引起潛在的電壓議題、系統過熱、以及諧波的產生。此外,太陽能發電的不穩定性將影響系統的控制,致使電容器開關和電壓調節器操作頻繁,進而損耗設備及增加系統損失。換言之,隨著日益增加的太陽能發電源併入系統,評估太陽能發電的潛在風險越顯重要,因此迫切地需要相關研究來探討饋線的太陽能承載容量,即饋線能接受且不會違反系統正常操作的太陽能最大併網裝置容量。
本論文提出隨機分析方法以決定配電饋線的太陽能承載容量。在本研究中,太陽能承載容量根據以下五個標準被定義:過電壓、電壓偏差量、動態電壓、電壓不平衡量、以及功率逆送。考量到未來饋線中太陽能配置的不確定性,本論文使用隨機分析法在饋線中多次模擬太陽能配置情況和容量,進行多次電壓品質影響的模擬以量化和統計太陽能的承載容量,並在太陽能模型中加裝智慧型變流器以改善電力品質和提升承載容量,經由研究這些影響,估算出不會危害饋線穩定度和安全性的太陽能的承載容量。並使用資料視覺化的方式呈現出饋線中太陽能裝置的最大承載容量。
本論文使用OpenDSS與Matlab共進行共同模擬,估配電饋線中的電壓品質,其中OpenDSS可提供快速負載潮流計算,且不僅可單獨運行亦可透過COM介面與多種其他軟體平台共同模擬,在每次OpenDSS模擬結束後,Matlab透過COM介面取其所需的資料加以分析計算並以圖形化呈現結果,以供進一步分析。

The integration of distributed energy resources (DERs), especially solar photovoltaics (PV), has been gaining place in the past decade, making solar the fastest growing renewable energy source. A high PV penetration can potentially lead to voltage issues, thermal stress, and system harmonics. Additionally, the variability in power generation due to PVs can affect system controls, resulting in capacitors switching and regulators tap changing frequently, and further deteriorate the equipment and increase the system losses. In other words, with adoption of solar energy rising, it is increasingly important for utilities to easily assess potential risks of PV systems. This calls for a study to determine the maximum installed capacity of PV; A condition for a given distribution feeder that can accommodate and without violating the nominal system operations is defined as the feeder’s PV hosting capacity.
In this thesis, a stochastic approach is applied to determine the PV hosting capacity in a distribution feeder. The hosting capacity is determined with respect to the following five power quality criteria: overvoltage, voltage deviation, dynamic voltage drop, voltage unbalance, and reversing power flow. By applying a stochastic approach, a large number of potential PV deployment scenarios are simulated in a distribution feeder. While considering the unpredictability of future PV deployments, both in terms of size and location are the randomly generated factors. The voltage quality impacts of multiple simulations are quantified and statistically representative PV hosting capacities. In addition, smart inverter strategy is adopted to improve power quality and enhance PV hosting capacity. After studying these impacts, estimation of the PV hosting capacity is made which will not endanger feeder stability and safety. Furthermore, a visualization manner is used to present the maximum capacity for possible PV installations for distribution feeders.
This thesis uses Open Distribution System Simulator (OpenDSS, or simply, DSS) in conjunction with Matlab to estimate voltage quality on distribution system feeders. OpenDSS offers the advantage of fast power flow analysis and it is implemented as both a stand‐alone executable program and an in‐process COM server DLL designed to be driven from a variety of existing software platforms. When simulation is done, Matlab is used to collect the needed data by COM interface and arrange to plot the results in order to do the further analysis.

中文摘要 i
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
I. INTRODUCTION 1
1.1 Background and Motivations 1
1.2 Research Methods 3
1.3 Contributions 4
1.4 Organization 5
II. HIGH PENETRATION PHOTOVOLTAIC SYSTEM IMPACT STUDIES 6
2.1 Challenges 6
2.1.1 Voltage Rise 7
2.1.2 Reverse Power Flow 7
2.1.3 Voltage Fluctuations 7
2.1.4 Interaction between Protection and control devices 8
2.1.5 Feeder Loading and Power Losses Increase 8
2.2 Regulation Standards of Grid-connected PV System 9
2.2.1 Definition 9
2.2.2 Classification of Grid-connect Renewable System 9
2.3 Mitigation Approaches 10
2.3.1 Voltage Regulators 10
2.3.2 On-Load Tap Changers (OLTC) 11
2.3.3 Static Var Compensators (SVC) 12
2.3.4 Photovoltaic Smart Inverter 12
III. PHOTOVOLTAIC AND SMART INVERTER FUNCTION 13
3.1 Brief Overview of PV System 13
3.1.1 Introduction of OpenDSS 14
3.1.2 Generic Model in OpenDSS 16
3.2 Smart Inverter Control 17
3.2.1 Overview of Smart Inverters 17
3.2.2 Intelligent Volt-Var Control 18
3.2.3 Intelligent Volt-Watt Control 20
3.2.4 Intelligent Volt-Var cooperates with Volt-Watt Control 22
IV. HOSTING CAPACITY STUDY 23
4.1 Hosting Capacity Concept 23
4.2 Impacting Factors 23
4.3 Limiting Factors 25
V CASE STUDY 29
5.1 Proposed Stochastic Analysis 29
5.2 Power System Simulation 35
5.3 Case Study 37
5.3.1 Results of Over-Voltage Criterion 40
5.3.2 Results of Voltage Deviation Criterion 42
5.3.3 Results of Dynamic Voltage Criterion 44
5.3.4 Results of Voltage Unbalance Criterion 46
5.3.5 Comparing Results 47
5.3.6 Results of Reversing Power Flow Criterion 48
5.3.7 Results of System Losses 52
5.3.8 Discussions 53
VI. CONCLUTION AND FUTURE WORKS 56
6.1 Conclusion 55
6.2 Future works 56
REFERENCES 57


[1]K. Li et al., Intelligent Computing for Sustainable Energy and Environment, Springer, 2nd Edition, 2013.
[2] J. R. Agüero and S. J. Steffel, “Integration challenges of photovoltaic distributed generation on power distribution systems,” Proc. of Power and Energy Society General Meeting, 2011 IEEE, pp.1,6, 24-29 July 2011
[3] R. Tonkoski et al., “Impact of High PV Penetration on Voltage Profiles in Residential Neighborhoods,” IEEE Trans. on Sustainable Energy, vol. 3, issue. 3, pp. 518-527, May, 2012.
[4] M. J. Reno et al., “PV Interconnection Risk Analysis through Distribution System Impact Signatures and Feeder Zones,” IEEE PES General Meeting | Conf. & Expo., July, 2014.
[5] R. A. (Reigh) Walling et al., “Summary of Distributed Resources Impact on Power Delivery Systems,” IEEE Trans. Power Del., vol. 23, no. 3, issue. 3, PP.1636-1644,
[6] Y. Liu et al., “Distribution System Voltage Performance Analysis for High-Penetration PV,” in Energy 2030 Conference, Atlanta, GA, Nov. 2008, pp.1-8.
[7]S. Eftekharnejad et al., “Impact of Increased Penetration of Photovoltaic Generation on Power Systems,” IEEE Trans. Power Del., vol. 28, issue. 2, pp. 893-901, Oct. 2012.
[8] P. Strauss, “Challenges towards the integration of PV in the distribution Grid,” DERlab e. v., Jun. 20, 2013.

[9]H. Ravindra, M. O. Faruque, P. McLaren, K. Schoder, M. Steurer, and R. Meeker, “Impact of PV on distribution protection system,” Proc. of North American Power Symposium (NAPS), 2012, pp.1-6, 2012
[10] H. Hafta et al., “Study of Energy Management for Decreasing Power Flow from Photovoltaic Power System,” 2009 IEEE PES/IAS Conf. on Sustainable Alternative Energy (SAE), Valencia, 2009, pp. 1-5.
[11] G. G. Pillai, G. A. Putrus, and Pearsall, N. M., “Impact of distribution network voltage rise on PV system energy yield,” Proc. of India Conference (INDICON), 2013 Annual IEEE, pp.1-5, 2013.
[12] M. J. E. Alam et al., “Distributed energy storage for mitigation of voltage-rise impact caused by rooftop solar PV,” IEEE Power and Energy Society General Meeting, San Diego, Calif., 2012, pp. 1-8.
[13] 台灣電力股份有限公司,「台灣電力股份有限公司再生能源發電系統併聯技術要點」
[14] IEEE Standard for Interconnecting Distributed Resources to Electric Power Systems, IEEE Standard 1547 – 2003
[15] “OpenDSS PVSystem Model Version 1,” [Online] Available: http://sourceforge.net/p/electricdss/discussion/861977/thread/4a71dbf8/3b2f/attachment/OpenDSS%20PVSystem%20Model.pdf
[16] Roger Dugan, “OpenDSS Level 2 Training,” EPRI Inc. 27 April 2009.
[17] Roger C. Dugan, “Reference Guide The Open Distribution System SimulatorTM (OpenDSS),” Technical Executive, EPRI Inc. March 2016.

[18] J. Smith, “Modeling High-Penetration PV for Distribution Interconnection Studies, Smart Inverter Function Modeling in OpenDSS, Rev. 2,” EPRI Project Manager.
[19] L. Rogers, “Smart Grid Invented a to Support Photovoltaic in New York Distribution Systems,” EPRI, Palo Alto, CA, Final Rep., Apr. 2015.
[20] H. V. Padullaparti et al., “Advances in Volt-Var Control Approaches in Utility Distribution Systems,” Apr., 2015.
[21] M. Farivary et al., “Optimal Inverter VAR Control in Distribution Systems with High PV Penetration,” in 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 1-7.
[22] B. Seal, “Common Functions for Smart Inverters, ver. 3,” EPRI, Palo Alto, CA, Tech. Updates, Feb. 2014.
[23] “Distributed Feeder Hosting Capacity: What Matters When Planning for DER,” EPRI, Apr. 2015.
[24] J. Smith, “Stochastic Analysis to Determine Feeder Hosting Capacity for Distributed Solar PV,” EPRI Project Manager, Technical Update, December, 2012.
[25] M. J. Reno et al., “Smart Inverter Capabilities for Mitigating Over-Voltage on Distribution Systems with High Penetrations of PV," in IEEE 39th Photovoltaic Specialist Conference (PVSC), Tampa, FL, 2013, pp. 3153-3158.
[26] J. Yaghoobi et al., “Dynamic Voltage Stability of Distribution System with a High Penetration of Rooftop PV units,” in 2015 IEEE Power &Energy Society General Meeting, Denver, CO, July, 2015, pp.1-5.
[27] C. W. Taylor, Power system voltage stability, Canada: MHR, 2007.
[28] M. J. Hossain et al., “A control methodology for renewable energy integrations in distribution systems,” IEEE PES Innovative Smart Grid Technologies Asia (ISGT), 2011.
[29] H. Hatta et al., “Study of Energy Management for Decreasing Reverse Power Flow from Photovoltaic Power Systems,” in 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), Valencia, Sept. 2009, pp.1 - 5.
[30] M. Rylander et al., “Streamlined Method for Determining Distribution System Hosting Capacity,” in Rural Electric Power Conference (REPC), Asheville, NC, Apr. 2015, pp.3-9.
[31] A. Mustapha et al., “Reduction of PV reverse power flow through the usage of EV's battery with consideration of the demand and solar radiation forecast,” in Electric Vehicle Conference (IEVC), 2013 IEEE International, Santa Clara, CA, Oct. 2013, pp.1-3.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top