跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/19 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳忠縈
研究生(外文):Chung-Ying Wu
論文名稱:以氧化鋁模板製備磁性Co-Ni/Cu多層奈米線之研究
論文名稱(外文):Fabrication and structure properties of multilayered CoNi/Cu nanowire arrays electrodeposited in AAO templates.
指導教授:吳文昌吳文昌引用關係
指導教授(外文):Wen-Chang Wu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:Co-Ni/Cu多層奈米線氧化鋁膜電解沉積法
外文關鍵詞:multilayered CoNi/Cu nanowireanodic aluminum oxide membraneelectrodeposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:142
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用陽極氧化處理後形成陣列式奈米孔洞之氧化鋁膜做為模板(AAO template),在不同電解條件下利用電解沉積法(electrodeposition)分別以交替方式將Co、Ni金屬原子和Cu原子填入奈米孔洞內,沉積直徑分別約為250 nm、90 nm、70 nm之Co-Ni/Cu多層奈米線陣列,並找出適當之沉積電位。而進一步改變非鐵磁性層厚度以及不同Co-Ni離子濃度和不同奈米線直徑,並對其微結晶結構和磁性之影響進行檢討。
Co-Ni合金層之厚度隨著沉積電位之增加,其沉積速率也隨之增加。但沉積電位在-0.9 V以下時,Co-Ni合金層成長速率較慢。在Co-Ni沉積電位-0.9 V~-1.2V之電位和Cu沉積電位-0.1 條件下皆可沉積多層且連續之奈米線,並以-1.0 V附近的Co-Ni沉積電位為最穩定。
在Co-Ni/Cu多層奈米線結晶結構上,Co-Ni合金層與Cu層皆為fcc結構,而鍍Cu層的厚度對奈米線的磁性質有明顯的影響,當Cu層厚度較厚(≧1.5μm)奈米線磁性較差。而當Cu較薄(≦30 nm),則具有良好的耦合作用及多層奈米線磁性質。
不同Co-Ni沉積電位不僅影響奈米線的沉積速率,也影響Co-Ni層之元素組成比。除此之外,在控制不同Co/Ni離子濃度比例亦可調整所沉積Co-Ni合金層之元素組成。當Co/Ni離子濃度比例為2:1與3:1時,奈米線中有Co金屬的析出。
在VSM分析中Co-Ni/Cu多層奈米線磁易軸大部分皆為磁場垂直奈米線方向,此外多層奈米線隨著Cu層厚度以及不同Co-Ni離子濃度之比例的改變,其磁性上也有所變化。在矯頑力方面,隨著Cu厚度下降(從約500 nm至約30 nm),其值劇烈的上升,由約119.7 Oe增加至198.7 Oe。而隨著多層奈米線Ni原子含量增加(約10 at %至55 at %),矯頑力隨著有降低之趨勢,由278.9 Oe降低至79.1 Oe。磁晶異向性使得Co-Ni/Cu多層奈米線可作為硬磁的材料,亦可作為軟磁材料上的應用。於此我們可依需求藉由不同原子比的合金多層奈米線,合成出所須的材料,這對於未來在磁記錄媒體上有良好應用的價值。
In this study, the multilayered CoNi/Cu nanowire arrays is prepared by using the arrays nanoporous of anodic aluminum oxide membrane as a template (AAO template ) with electrodeposition method. The diameter of AAO pores is about 250nm, 90nm and 70nm, respectively. The CoNi/Cu nanowire arrays were deposited at various electrolytic condition. The optimum electrolytic conditions had been investigated. Furthermore, we changed in non-ferromagnetic layer thickness, Co/Ni ions concentration and pore diameter of AAO, and its microcrystalline structure and magnetic properties were investigated..
The deposition rates is increased with the increasing of the electrolytic potential. CoNi alloy layers almost not be obtained as the electrolytic potential less then -0.9 V. The CoNi/Cu nanowires were deposited successfully in the electrolytic potential range of -0.9 V to -1.2 V. On the other hand, the multilayered CoNi/Cu nanowires were not grown uniformly as the electrolytic potential above -1.0 V. Therefore, the optimum electrolytic potential was determined of -1.0 V.
Crystalline structure of multilayered CoNi/Cu nanowires was always fcc structure with any deposited potential for Co-Ni alloy and Cu. On the other hand, the thickness of Cu layer affect significantly on the magnetization of Co-Ni alloy layers. When the thickness of layer was above 1.5μm and had a bed magnetization.
Different Co-Ni deposition potential affects not only the deposition rate of the nanowire, but also the impact of Co-Ni layers of the proportion of elements. In addition, in the control of various Co-Ni ion concentration can also adjust the ratio of elements of Co-Ni alloy layer. In the TEM analysis of the elements also proved for the continuous multilayered nanowires compose of the Co-Ni layers and Cu layers.
From VSM pattern the saturate magnetization can be 11000 Oe., the easy magnetization axis are all perpendicular the nanowires, and the coercivity of multilayered CoNi/Cu nanowires are in the soft and hard magnet range. The multilayered CoNi/Cu nanowires with different Cu layer thickness, as well as Co-Ni ratio of ion concentration changes on the magnetic properties also change. Looked in the coercive, because the magnetism crystal make multilayered CoNi/Cu nanowires deviation hard magnetism the material, to this us may know in multilayered CoNi/Cu nanowires may do for outside the magnetically soft material good application, may depend on the demand affiliation in the hard magnetism aspect by the different atom content ratio alloy nanowire, synthesizes must material, regarding future on magnetic recording media its application value.
摘要.................................................................................................................................i
英文摘要.......................................................................................................................iii
目錄 v
表目錄 viii
圖目錄...........................................................................................................................ix
第一章 緒論 1
1.1 前言………………………………………………………………………….1
1.2 文獻回顧 5
1.2.1 奈米線之製備.......................................................................................5
1.3 研究動機 8
第二章 理論簡介 10
2.1 多孔性陽極氧化鋁膜....................................................................................10
2.2 電沉積原理………………………………………………….…………..….14
2.2.1 電沉積Co-Ni/Cu多層奈米線.............................................................17
2.2.2 電沉積Co-Ni奈米線...........................................................................18
2.3 磁性物質之特性……………………………………………........................21
2.3.1 磁性材料之分類…………………………………….....……………21
2.3.2 鐵磁性材料之磁滯現象與自發磁化………………………………26
2.3.3巨磁電阻材料……………………………………………….………27
第三章 實驗方法........................................................................................................30
3.1 實驗藥品與鍍液組成...................................................................................31
3.1.1 實驗藥品……………………………………………………………31
3.1.2 鍍液組成……………………………………………………………32
3.2 電鍍沈積裝置……………………………………………….......................34
3.3 實驗步驟…………………………………………………….......................36
3.3.1 電流-電位掃描量測………………………………………………...36
3.3.2 電沉積Co-Ni/Cu多層奈米線……………………………………...36
3.3.3 氧化鋁膜及多層奈米線的製備…………………………………….38
3.4 樣品表面狀態結晶微結構及磁性分析…………........................................42
3.4.1 場放射型掃描式電子顯微鏡(FESEM)……………………………..42
3.4.2 高解析穿透式電子顯微鏡(HRAEM)………………………………42
3.4.3 X光繞射(XRD)….…………………………………………………..42
3.4.4 振動樣品磁化儀(VSM)……………………………………………..43
第四章 結果與討論 44
4.1 電解條件之探討 44
4.2 沉積條件對奈米線沉積行為及磁性之影響 47
4.2.1 不同Co-Ni合金沉積電位……………………………..………...47
4.2.2 不同Cu層沉積時間的影響……………………………………..57
4.2.3 Co/Ni離子濃度比的影響..………………………………...……..62
4.3多孔性氧化鋁膜之備製 70
4.3.1 表面型態與孔徑及膜厚分析.…………………………..………...70
4.3.2 擴孔分析………………….………………………………...……..74
4.3.3 不同奈米線直徑的影響.…………………………………...……..77
第五章 結論 82
第六章 參考文獻........................................................................................................84
1. 張煦,李學養,磁性物理學,聯經出版事業公司,民71年。
2. Y. Guo, D. H. Qin, J. Bo Ding, and H. L. Li, Annealing and morphology effects on the Fe 0.39Co 0.61 nanowire arrays, Applied Surface Science, 218, 106–112 (2003).
3. Q. F. Liu, C. X. Gao, J. J. Xiao, and D. S. Xue, Size effects on magnetic properties in Fe0.68Ni 0.32 alloy nanowire arrays, Journal of Magnetism and Magnetic Materials, 260, 151–155 (2003).
4. J. M. Garcia, A. Asenjo, J. Velazquez, D. Garcia, M. Vazquez, P. Aranda, and E. Ruiz-Hitzky, Magnetic behavior of an array of cobalt nanowires, Journal of Applied Physics, 85(8),5480-5482 (1999).
5. M. Vazquez, Soft magnetic wires, Physica B, 299, 302–313 (2001).
6. 金重勳,磁性技術手冊,磁性技術協會,民91年。
7. Y. C. Kong, and D. P. Yu, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, 78(4), 407-409 (2001).
8. Y. Zhang, Q. Zhang, Y. Li, N. Wang, and J. Zhu, Coating of carbon nanotubes with tungsten by physical vapor deposition, Solid State Communications, 115, 51–55 (2000).
9. A. A. Setlur, J. M. Lauerhaas, A method for synthesizing large quantities of carbon nanotubesand encapsulated copper nanowires, Applied Physics Letters, 345-347 (1996).
10. A. Z. Jin, Y. G. Wang, Z. Zhang, Synthesis and characterization of Cu/SiO2-x composite nanowires, Journal of Crystal Growth, 252, 167–173 (2003).
11. P. Aranda, J. M. Garcıa, Porous membranes for the preparation of magnetic nanostructures, Journal of Magnetism and Magnetic Materials, 249, 214–219 (2002).
12. A. Fert, L. Piraux, Magnetic nanowires, Journal of Magnetism and Magnetic Materials, 200, 338-358 (1999).
13. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum, Solid-State Electronics, 43, 1143-1146 (1999).
14. Y. Zhou, J. Huang, C. Shen, H. Li, Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties, Materials Science and Engineering, 335(A), 260–267 (2002).
15. M. S. Gudiksen, J. Lincoln, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 617-620 (2002).
16. X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Fabrication of Ni–W–P nanowire arrays by electroless deposition and magnetic studies, Physica, 23(E), 75-80 (2004).
17. X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Autocatalytic redox fabrication and magnetic studies of Co–Ni–P alloy nanowire arrays, Solid State Communications, 130, 429–432 (2004).
18. L. Li, Y. Zhang, G. Li, L. Zhang, A route to fabricate single crystalline bismuth nanowire arrays with different diameters, Chemical Physics Letters, 378, 244–249 (2003).
19. Y. Zhou, C. Shen, H. Li, Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template, Solid State Ionics, 146, 81–86 (2002).
20. Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, and C. L. Bai, Ordered Ni-Cu nanowire array with enhanced coercivity, Chem. Mater., 15, 664-667 (2003).
21. C. G. Jin, W. F. Liu, C. Jia, X. Q. Xiang, W. L. Cai, L. Z. Yao, X. G. Li, High-filling,large-area Ni nanowire arrays and the magnetic Properties, Journal of Crystal Growth, 258, 337–341 (2003).
22. A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, and M. C. Blanco, Influence of the synthesis parameters on the crystallization and magnetic properties of cobalt nanowires, Journal of Non-Crystalline Solids, 287, 5–9 (2001).
23. D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, Fine magnetic properties obtained in FeCo alloy nanowire arrays, Chemical Physics Letters, 358, 484–488 (2002).
24. G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, Y. W. Du, Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays, Solid State Communications, 130, 541–545 (2004).
25. K. Miyazaki, S. Kainuma, K. Hisatake, T. Watanabe, N. Fukumuro, Giant magnetoresistance in Co-Cu granular alloy films and nanowires prepared by pulsed-electrodeposition, Electrochimica Acta, 44, 3713-3719 (1999).
26. Y. K. Su, D. H. Qin, H. L. Zhang, H. Li, H. L. Li, Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays, Chemical Physics Letters, 388, 406–410 (2004).
27. 賴耿陽,實用電鍍技術全集,復漢出版社,民87年。
28. G. E. Thompson, G. C. Wood, Porous anodic films formation on aluminum, Nature, 290, 230-232 (1981).
29. H. Chen, R. G. Downing, Guiding and focusing neutron beams using capillary optics, Nature, 357, 391-393 (1992).
30. R. J. Tonucci, B. L. Justus, Nanochannel array glass, Science, 258(30), 783-785 (1992).
31. H. Masuda, K. Fukuda, Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466-1471 (1995).
32. G. E. Thompson, Porous anodic alumina:fabrication, characterization and applications, Thin Solid Films, 297, 192-201 (1997).
33. L. Young, Anodic oxide films, Academic Press:New York, (1971).
34. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, Highly ordered monocrystalline silver nanowire arrays, Journal of Applied Physics, 91, 3243-3247 (2002).
35. Y. T. Pang, G. W. Menga, L. D. Zhang, W. J. Shana, C. Zhang, X. Y. Gao, A. W. Zhao, Synthesis of ordered Al nanowire arrays, Solid State Sciences, 5, 1063–1067 (2003).
36. W. B. Zhao, J. J. Zhu, H. Y. Chen, Photochemical synthesis of CdSe and PbSe nanowire arrays on a porous aluminum oxide template, Scripta Materialia, 50, 1169–1173 (2004).
37. 熊楚強,王月,電化學,大洋出版社,民85年。
38. 張世杰,次0.15微米溝渠與引洞上電鍍銅技術,交通大學材料所碩士論文,民89年。
39. W. Blum, Trans. Am.Electrichem. Soc, 40, 307–320 (1921).
40. Y. Ueda, N. Hataya, and H. Zaman, Magnetoresistance effect of Co/Cu multilayer film produced by electrodeposition method, J. Magn. Magn. Mater. 156, 350 (1996).
41. H. Zaman, A. Yamada, H. Fukuda, and Y. Ueda, Magnetoresistance Effect in Co-Ag and Co-Cu Alloy Films Prepared by Electrodeposition, J. Electrochem. Soc. 145, 565 (1998).
42. J. Yahalom and O. Zadok, Formation of composition-modulated alloys by electrodeposition, J. Mat. Sci. 22, 499 (1987).
43. M. Alper, K. Attenborough, R. Hart, S. J. Lane, D. S. Lashmore, C. Younes, and W. Schwarzacher, Giant magnetoresistance in electrodeposited superlattices, Appl. Phys. Ett. 63, 2144 (1993).
44. 賴耿陽,超音波工學理論實務,復漢出版社公司,民81年。
45. L. Wang, K. Y. Zhang, A. Metrot, P. Bonhomme and M. Troyon, TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires, Thin Solid Film 288, 86 (1996).
46. S. Dubois, C. Marchal, J. M. Beuken and L.Piraux, Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires, Appl. Phys. Lett. 70, 396 (1997).
47. 張立德、嚴東生與馮端,材料新星-奈米材料科學;長沙湖南科技出版社:長沙,民86。
48. 郭天傑,超音波照射應用於陽極氧化鋁模板製備磁性Co奈米線之研究,民94。
49. 白育綸,電沉積鐵族合金之組成控制、表面奈米化應用,民92。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top