[1] L. A. Zadeh, “Knowledge representation in fuzzy logic, “IEEE Trans. on Knowledge Data Engineering,” vol. 1, pp. 89-100, 1989.
[2] S. Haykin, Neural Networks. A Comprehensive Foundation, NY: Macmillan College Publishing, 1994.
[3] C. G. Looney, Pattern Recognition using Neural Networks: Theory and Algorithms for Engineers and Scientists, NY, USA: Oxford University Press, Inc, 1997.
[4] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, 1989.
[5] K. F. Man, K. S. Tang and S. Kwong, “Genetic algorithms: concepts and applications [in engineering design],” IEEE Trans. on Industrial Electronics, vol. 43, pp. 519-534, 1996.
[6] M. Mitchell, An Introduction to Genetic Algorithms, Cambridge, MA, USA: MIT Press, 1996.
[7] “www.terasic.com.”
[8] S. D. Scott, A. Samal and S. Seth, “HGA: A hardware-Based Genetic Algorithm,” ACM/SIMDA 3rd Int. Symposium on FPGA, pp. 53-59, 1995.
[9] N. Yoshida and T. Yasuoka, “Multi-GAP: Parallel and distributed genetic algorithms in VLSI,” IEEE Int. Conf. Syst., Man, and Cyber., vol. 5, pp. 571-576, 1999.
[10] C. T. Lin and C. S. G. Lee, Neural fuzzy systems, Prentice Hill Inc, 1996.
[11] 王進德,「類神經網路與模糊控制理論-入門與應用」,全華圖書股份有限公司,2008。
[12] 林俊良,「智慧型控制-分析與設計」,全華科技圖書股份有限公司,2005。
[13] "http://www.iitk.ac.in/karmaa/DownloadTools/MCIT_DataCompressionProject/User_Manual_Image_Compression.html"
[14] P. Y. Chen, R. D. Chen, Y. P. Chang, L. S. Shieh and H. A. Malki, “Hardware implementation for a Genetic algorithm,” IEEE Trans on Instrumentation and Measurement, vol. 57, pp. 699-705, 2008.
[15] M. Serra, T. Slater, J. C. Muzio and D. M. Miller, “The Analysis of One-Dimensional Linear Cellular Automata and Their Aliasing Properties,” IEEE Trans. on Computer-Aided Design, vol. 9, pp. 767-778, 1990.
[16] P. D. Hortensius, R. D. McLeod and H.C. Card, “Parallel Random Number Generation for VLSI Systems Using Cellular Automata,” IEEE Trans. on Computers, vol. 9, pp. 1466-1473, 1989.
[17] 劉澤翰,「以FPGA為核心之倒傳遞類神經網路硬體實現」,國立交通大學電機學院電控工程研究所碩士論文,民國100年。[18] Y. Maeda, and M. Wakamura, “Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation,” IEEE Trans. on Neural Networks, vol. 16, pp. 1664-1672, 2005.
[19] T. Szabo, L. Antoni, G. Horvath, and B. Fether, “A full-parallel digitial implementation for pre-trained NNs,” Proc. Of the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks, vol. 2, pp. 49-54, 2000.
[20] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization,” IEEE Trans. on Neural Networks, vol. 18, no. 3, pp. 880-888, 2007.
[21] M. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, pp. 287-289, 1977.
[22] J. Wu, X. Zhang, F. Zhang etc, “The experiment research of edge detection in digital image”. Microcomputer Information (CONTROL & AUTOMATION), vol. 20, pp. 106-107, 2004.
[23] L. G. Roberts, “Machine Perception of Three-Dimension Solids”, Optical and Electro-Optimal Information Processing, England : Cambridge, pp. 99-19, 1965.
[24] L. Sobel, Camera Models and Machine Perception, CA: Stanford University, pp. 121, 1970.
[25] J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp.679-699, 1986.
[26] J. Prewitt. “Enhancement and Extraction”, Picture Process, NY: Academic Press, pp.75-1970, 1970.
[27] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, Prentice-Hall Inc, 2003.