一、中文部份
王美芬 (1991)。自然科錯誤概念之研究。台北市立師範學院學報,22,367-400。
王國川 (2003)。探討警告標誌、救生站、水域救生與溺水結果之關係。衛生教育學報,20,111-130。世界數學簡史 (1987)。新竹:凡異出版社。
白惠銣 (2005)。國小六年級學童機率概念的試題編製與分析之研究。國立臺中師範學院數學教育學系教學碩士論文,未出版,臺中市。朱雅瑋 (1996)。國小學童機率的直觀概念。國立新竹師範學院初等教育研究所碩士論文,未出版,新竹市。何意中 (1988)。國小三、四、五年級學生比例推理之研究。花蓮師院學報,2,387-433。吳毓瑩、呂玉琴 (1997)。潛在類別分析對兒童等值分數概念結構之解析。行政院國家科學委員會專題研究計劃精簡報告 (NSC85-2511-S-152-007)。
吳毓瑩、林原宏 (1996)。潛在類別分析取向的除法概念結構。中國測驗學會測驗年刊,43,345-358。
吳靜瑜 (1999)。國小六年級學童機率概念之研究。國立嘉義師範學院國民教育研究所碩士論文,未出版,嘉義市。李佳芸 (2007)。國小高年級學童在彈珠機率問題的解題規則階層次序之研究。國立臺中教育大學數學教育研究所碩士論文,未出版,臺中市。
李重孝 (2004)。探討國小機率教學之可行性—以六年級為例。國立臺北師範學院數理教育研究所碩士論文,未出版,臺北市。李雪燕、辛濤 (2006)。特質焦慮的潛在類別分析。北京師範大學學報(自然科學版),42 (6),610-614。
車宏生、楊六琴 (2002)。股市個人投資者的潛在類型分析。管理科學學報(北京師範大學心理學院心理系),5 (5),23-29。
林香、張英傑 (2004)。國小數學資優生運用畫圖策略解題之探究。國立臺北師範學院學報,17 (2),1-22。
林原宏 (1999)。常態混合模式的模糊分割之資料模擬研究。國立台中師範學院數理學報,3 (1),4-1~4-38。
林原宏 (2006)。解題規則次序分析方法及其實證研究。教育與心理研究,29,599-619。林原宏、游森期 (2006)。次序理論取向的解題規則階層分析及其結構圖比較之探究。測驗學刊,53,239-260。林惠雅 (2005)。國小學童母親信念、教養目標和教養行為的潛在類別分析及其子女學業表現關聯之初探。台灣心理學會第44屆年會「心理學家的社會責任與社會參與」,桃園縣。
林瑋詩 (2007)。國小高年級學童在比例問題的解題規則階層次序之探究。國立臺中教育大學數學教育學系碩士論文,未出版,臺中市。林福來、郭汾派、林光賢 (1985)。國中生的比例概念發展。科教月刊,87,14-42。
林燈茂 (1992)。11-16歲學童之「相對差異」與「大數法則」概念初探。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。邱俊豪 (2004)。潛在類別模式的探討。逢甲大學統計與精算研究所碩士論文,未出版,臺中市。施能宏 (1997)。國小高年級學生機率文字題表現之研究。國立台中師範學院教育學系碩士論文,未出版,臺中市。翁宜青 (2002)。一位三年級學童解比例問題之研究。國立嘉義大學國民教育研究所碩士論文。未出版,嘉義縣。翁宜青、劉祥通 (2003)。一位國小三年級學生解簡單式比例問題之研究。科學教育研究與發展季刊,31,31-35。涂金堂 (2003)。認知診斷評量的探究。南師學報,37,67-97。
張捷勝 (2002)。探討兒童的機率學習—以國小六年級的學生為例。國立臺北師範學院數理教育研究所碩士論文,未出版,臺北市。教育部 (2001)。國民中小學九年一貫課程數學領域暫行綱要。台北:教育部。
教育部 (2003)。國民中小學九年一貫課程綱要-數學學習領域。台北:教育部。
莊玉如 (2005)。國小四年級學童比例問題解題表現之研究。國立臺中教育大學數學教育學系碩士論文,未出版:臺中市。莊嘉坤 (1995)。國小學生科學態度潛在類別的分析研究。國立屏東師範學院學報,8,111-136。
郭丁熒 (2001)。台灣小學教師角色知覺差距因應方式之探討-調查、內容分析及潛在類別分析。國家科學委員會研究彙刊:人文及社會科學,11 (1),93-112。
郭重吉、吳武雄 (1990)。利用晤談方式探查國中學生對重要物理概念的另有架構之研究(二)。行政院國家科學委員會專題研究成果報告(NSC79-0111-S018 -003-D)。
陳竹村、林淑君、陳俊瑜 (2002)。國小數學教材分析:比(含線段圖)。臺北:國立教育研究院籌備處。
陳彥廷、柳賢 (2005)。運用鷹架理論初探國小學生數學學習—以一位五年級學童為例。南大學報數理教育類,39 (1),27-44。
陳敏華 (1999)。國小六年級兒童比和比例概念初探。國立臺中師範學院數學教育學系碩士論文,未出版,臺中市。陳惠萍 (2007)。國小高年級學生在相關性問題之解題規則階層結構與分群探討。國立台中師範學院數學教育學系碩士班碩士論文,未出版,臺中市。黃宗堅、周玉慧、謝雨生 (2004)。家人關係的測量與分類:以青少年原生家庭成員互動為例 。中華心理學刊 ,46 (4),307-328。楊怡芳 (2005)。國小五年級高中低能力兒童機率概念與思考層次之研究。國立臺中師範學院數學教育研究所論文,未出版,臺中市。楊珊珊 (2005)。國小五年級兒童學習機率概念之探討。國立臺中師範學院數學教育研究所論文,未出版,臺中市。楊錦連 (1999)。國小高年級兒童解決比例問題之研究。嘉義大學國民教育研究所碩士論文,未出版,嘉義縣。溫美玲 (2004)。潛在類別模型在分析測驗結果的應用。中原大學應用數學系碩士論文,未出版,桃園縣。
葉光輝、劉長萱 (1995)。問題的潛在類別分析。收錄於章英華、傅仰止、瞿海源(編者),社會調查與分析 (pp.261-282)。台北:中央研究院民族學研究所。
詹淑雯 (2005)。國小四年級學童解機率問題之個案研究。國立臺中教育大學數學教育學系碩士論文,未出版,臺中市。劉秋木 (1996)。國小數學科教學研究。臺北:五南圖書出版公司。
劉家惠 (2006)。潛在類別分析於國小數學領域錯誤類型診斷之應用。國立台中師範學院教育測驗統計研究所碩士論文,未出版,臺中市。
劉祥通 (2004)。分數與比例問題解題分析:從數學提問教學的觀點。臺北:師大書苑。
劉祥通、周立勳 (1999)。國小比例問題教學實踐課程之開發研究。中師數理學報,3 (1),3.1-3.25。蔡文煥 (1998)。國小統計教材機率—初步概念之設計理念與實際。國民小學數學科新課程概說—高年級 (pp.257-266)。台北:教育部。
蔡欣潔 (2005)。從學習機率之基本數學工具觀點探究國小高年級學童機率概念發展之研究。國立臺南大學應用數學研究所碩士論文。未出版,臺南市。鄭中平、翁儷禎 (2004)。潛在變項組型混合模型之結構方程式模型估計:隨機EM算則。中華心理學刊,46 (4),283-292。
鄭英豪 (1990)。比的參數與比例關係式的瞭解。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。鄭蕙如 (2006)。國中生數學內容知識與數學認知能力之混合Rasch模式分析研究。國立台灣師範大學教育心理與輔導學系博士論文,未出版,臺北市。韓燕言 (2002)。國小六年級學生機率初步概念學習表現之研究。臺中師範學院數學教育學系在職進修教學碩士學位班碩士論文,未出版,臺中市。魏金財 (1987)。兒童比例推理能力探討。七十六年學術研討會文集,122-140。
羅友任 (2003)。國小高年級學生機率解題的後設認知與溝通表現之相關研究。臺中師範學院數學教育學系在職進修教學碩士學位班碩士論文,未出版,臺中市。關秉寅 (1999)。臺灣社會民眾處理人際糾紛態度之研究。臺灣社會學刊,22 ,127-171。關秉寅 (2001)。台灣社會民眾的階級認同:潛在類別分析。行政院國科會90年度專題研究計畫 (NSC90-2412-H-004-021)。
二、英文部份
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory ( pp.267-281).
Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30, Part A, 9-14.
Austin, E. J., Deary, I. J., & Egan, V.(2006). Individual differences in response scale use: mixed Rasch modeling of responses to NEO-FFI items. Personality and Individual Differences, 40, 1235-1245.
Bart, W. M., & Orton, R. E. (1991). The cognitive effects of a mathematics in-service workshop on elementary school teachers. Instructional Science, 20, 267-288.
Bart, W. M., & Williams-Morris, R. (1990). A refined item digraph analysis of proportional reasoning test. Applied Measurement in Education, 3(2), 143-165.
Bart, W. M., Post, T., Behr, M., & Lesh, R. (1994). A diagnostic analysis of a proportional reasoning test item: an introduction to the properties of a semi-dense item. Focus on Learning Problems in Mathematics, 16(3), 1-11.
Bartholomew, D. J. (1987). Latent variable models and factor analysis. New York: Oxford University Press.
Behr, W. M., Harel, T., Post, T. R., & Lesh, R. (1992). The hierarchical structure of formal operational tasks. Applied Psychological Measurement, 3, 343-350.
Bognar, K., & Nemetz, T. (1977). On the teaching of probability at secondary level. Educational Studies in Mathematics, 8, 399-404.
Bonnefon, J. F., Eid, M., Vautier, S., & Jmel, S. (2007). A mixed Rasch model of dual-process conditional reasoning. The Quaterly Journal of Experimental Psychology. 61(5), 809-824.
Boom, J., Hoijtink, H., & Kunnen, S. (2001). Rules in the balance classes, strategies, or rules for the balance scale task? Cognitive Development, 16, 717-735.
Bozdogan, H. (1992). Choosing the number of component clusters in the mixture- model using a new Informational complexity criterion of the inverse-fisher information matrix. In O. Opitz, B. LAusen and R. Klar (Eds.), Information and Classification: Concepts, Methods and Applications (pp.44-45), New York. Springer-Verlag.
Buehler, C., Cox, M. E., & Cuddeback, G. (2003). Foster parent’s perceptions of factors that promote or inhibit successful fostering. Qualitative Social Work, 2(1), 61-83.
Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel, (Eds.), Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York: Plenum Press.
David, R. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 85-97.
David, R. (1984). Latent variable models: Applications in education. Contemporary Educational Psychology, 9, 104-121.
David, R., & Wallace, R. (1986) The value of latent class analysis in medical diagnosis. Statistics in medicine, 5(1), 21-7.
Davier, M. von (2001). WINMIRA 2001: A software for estimating Rasch models, mixed and HYBRID Rasch models, and the latent class analysis [Computer software]. Retrieved August 5, 2005, from the Assessment System Corporation: http://www.assess.com/Software/WINMIRA.htm
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39, 1, 1-38.
Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175-196.
Fast, G. R. (1997). Using analogies to overcome student teachers’ probability misconceptions. Journal of Mathematical Behavior, 16 (4), 325-344.
Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, Holland: D. Reidel Publishing Co.
Fischbein, E. (1987) . Intuition in science and mathematics. Dordrecht, The Netherlands: Reidel.
Fischbein, E. (1991) . Factors affecting probabilistic judgments in children and adolescents. Educational Studies in Mathematics, 22(6), 523-549.
Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359-374.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, Holland: D. Reidel Publishing Co.
Girotto, V., & Gonzalez, M. (2007). Children’s understanding of posterior probability, Cognition (In Press).
Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables are unobservable. Part I: A modified latent structure approach, American Journal of Sociology, 79, 1179-1259.
Green, D. R. (1983a). A survey of probability concepts in 3000 pupils aged 11-16 years. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching Statistics (pp.766-783). Sheffield, UK: Teaching Statistics Trust.
Green, D. R. (1983b). School pupils’ probability concepts. Teaching Statistics, 5(2), 34-42.
Haertel, E. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 333-352.
Halford, G. S., & Dalton, C. (1995). Performance on the balance scale by two year old children (ERIC NO ED385355).
Hardiman, P. T. (1984). Learning to understand the balance beam (ERIC NO ED259296).
Heinen, T. (1996). Latent class and discrete latent trait models: similarities and differences. Thousand Oakes: Sage Publications.
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from children to adolescence. New York: Basic Books.
Jansen, B. R. J., & Van der Maas, H. L. J. (1997). A statistical test of the rule assessment methodology by latent class analysis. Developmental Review, 17, 321-357.
Jansen, B. R. J., & Van der Maas, H. L. J. (2002). The development of children's rule use on the balance scale task. Journal of Experimental Child Psychology , 81(4) , 383-416.
Jones, G. A., Thornton, C. A., Langgrall, C. W., & Mogill, A. T. (1997). A framework for assessing and nuturing young children’s thinking in probability. Educational Studies in Mathematics, 32, 101-125.
Jones, G. A., Thornton, C. A., Langrall, C. W., & Tarr, J. A. (1999). Understanding students’ probabilistic reasoning. In Stiff, L. V. & Curcio F. R. (Eds.), Developing mathematical analyzing in grades k-12: 1999 year book (pp.146-155). Reston, VA: National Council of Teachers of Mathematics.
Karplus, R., Pulos. S., & Stage, E. (1983). Proportional reasoning of early adolescents. In R. Lesh., & M. Landau(Eds.), Acquisition of mathematics concepts and processes. New York: Academic Press.
Kathleen, K. B., Andrew, C. H., Theodore, R., Victor, M. H., John, R. K., John, Jr. I. N., & Marc, A.(1996) Can we subtype alcoholism? A latent class analysis of data from relatives of alcoholics in a multicenter family study of alcoholism. Alcoholism: Clinical and Experimental Research, 20(8), 1468-1471.
Kendler, K. S., Karkowski, L. M., & Walsh, D. (1998). The structure of psychosis -latent class analysis of probands from the roscommon family study. Archives of General Psychiatry, 55(6), 492-499.
Koeller, O. (1994). Identification of guessing behavior on the basis of the mixed Rasch model. (ERIC NO ED369814).
Lamon, S. J. (1993a). Ratio and proportion: connecting content and children's thinking. Journal for Research in Mathematics Education, 24, 41-61.
Lamon, S. J. (1993b). Ratio and proportion: children’s cognitive and metacognitive processes. In T. P. Carpenter, E. Fennema, & T. A. Romberg(Eds.), Rational numbers: An integration of research(pp.131-156). Mahwah, NJ: Lawrence Erlbaum Associates.
Lamon, S. J. (1994). Ration and proportion: cognitive foundations in unitizing and norming. In G. Harel and J. Confrey(Eds.), The development of multiplicative reasoning in the learning of mathematics (pp.89-120). Albany N.Y.: State University of New York Press.
Lamon, S. J. (1995). Ratio and proportion: elementary didactical phenomenology. In J. T. Sowder, & B. P. Schappelle(Eds.), Providing a foundation for teaching mathematics in the middle grades (pp.167-198). Albany, NY: State University of New York Press.
Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis & The interpretation and mathematical foundation of latent structure analysis. S.A. Stouffer et al. (eds.), Measurement and Prediction (pp.362-472). Princeton, NJ: Princeton University Press.
Lesh, R., Post, T., & Behr, M. (1988). Proportional Reasoning. In J. Hiebert & M. Behr(Eds.), Number Concepts and Operations in the Middle Grades (pp.93-118). Reston, VA:NCTM.
Lin, Y. H., & Hung, W. L. (2007a). Robust clustering on rules usage classification of OJT with raw rule score. Proceedings of the Second International Conference on Innovative Computing, Information and Control (ICICIC 2007) (2007.09.5-7). Kumamoto City International Center, Kumamoto, Japan .
Lin, Y. H., & Hung, W. L. (2007b). Robust clustering on rule usage of probability reasoning with raw rule score. The 3rd International Conference on Natural Computation (ICNC'07) and The 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'07) (ICNC'07-FSKD'07) (2007.08.24-27). Haikou, China .
Lin, Y. H., Yu, M. N., & Wu, B. L. (2006a). Fuzzy statistics analysis of rules usage classifications on probability reasoning test with multiple raw rule score . 第四屆台灣智慧科技與應用統計研討會(2006.6.24)。台中縣:朝陽科技大學。
Lin, Y. H., Yu, M. N., & Wu, B. L. (2006b). Fuzzy classification analysis of rules usage on probability reasoning test with multiple raw rule score . The 2nd WSEAS International Conference on Educational Technologies (EDUTE 2006) (2006. 10.16-18). Bucharest, Romania.
Linn, R. L. (1990). Diagnostic testing. In N. Frederiksen, R. Glaser, A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring. NJ: Lawrence Erlbaum Associates.
Lo, J. J., & Watanabe, T. (1997). Developing ratio and proportion schemes: a story of a fifth grader. Journal for Research in Mathematics Education, 28, 216-236.
Lopes, C. A. E., & de Moura, A. R. L. (2002). Probability and statistics in elementary school: a research of teachers’ training. In B. Phillips (Eds.), Proceedings of the Sixth International Conference on the Teaching of Statistics (On CD). Nawthorn, VIC: International Statistical Institute.
Macready, G. B., & Dayton, C. M. (1992). The application of latent class models in adaptive testing. Psychometrika, 57, 71-88.
Michelle, K. M. (1998). Assessing students' understanding about levers : better test instruments are not enough. International Journal of Science Education. 20 (7), 813-832.
Miller, J. L., & Fey, J. T. (2000). Proportional reasoning. Mathematics Teaching in the Middle School, 5, 310-313.
Misailidou, C., & Williams, J. S. (2003a). Developing ratio and proportion schemes: a story of a fifth grader. Journal for Research in Mathematics Education, 28, 216-236.
Misailidou, C., & Williams, J. (2003b). Diagnostic assessment of children’s proportional reasoning. Journal of Mathematical Behavior, 22, 335–368.
Mislevy, R. J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195-215.
Munisamy, S., & Doraisamy, L. (1998) . Levels of understanding of probability concepts among secondary school pupils. Internationl Journal of Mathematical Education in Science & Technology, 29(1), 39-46.
National Council of Teachers of Mathematics (2000). The Principles and Standards for School Mathematics. Reston, VA: NCTM.
Neolting, G. (1980). The development of proportional reasoning and the ratio concept. Part I – Different of stages. Educational Studies in Mathematics, 11, 217-253.
Nohda, N. (1984). Developmental research on teaching and learning in mathmatics education—A view of doubling and halying based on ratio concept. Paper presented at the Proceedings of the Eighth Internatonal Conference for the Psychology of Mathematics Education (July 1984). Sydney, Australia.
Patrick, F. S., Ronald, C. K., & Kendler, K. S. (1998) Latent class analysis of lifetime depressive symptoms in the national comorbidity survey. American Journal of Psychiatry, 155, 1398-1406
Pepe, M. S., & Janes, H.(2005). Insights into Latent Class Analysis. UW Biostatistics Working Paper Series (Working Paper 236).
Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. London: Rotledage & Keagan Paul.
Pickles, A., Bolton, P., Macdonald, H., Bailey, A. Le Couteur, A., Sim, C. H., & Rutter, M. (1995). Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. American Journal Human Genet, 57, 717–726.
Qu, Y. S., Tan, M., & Michael H. K. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics, 52(3), 797-810.
Rodrigo, M. J., Castaneda, J., & Camacho, J. (1999). Mental models in predictive reasoning with perceptual and semantic base rates: a developmental perspective. European Journal of Cognitive Psychology, 11, 499- 529.
Rost, J. (1990). Rasch models in latent classes: an integration of two approaches to item analysis. Appled Psychological Measurement, 14, 271-282.
Rost, J., Carstensen, C., & von Davier, M. (1998). Applying the mixed Rasch model to personality questionnaires. In J. Rost & R. Langeheine(Eds.), Application of latent trait and latent class models in the social sciences (324-332). Munster: Waxmann.
Rsot, J. (1988). Rating scale analysis with latent class models. Psychometrika, 53, 327-348.
Schmidt, K. M. (2002). Using the mixed Rasch model to discover latent classes of cognitive self-efficacy. Paper presented at the annual workshop of The Institute for Objective Measurement, New Orleans, LA.
Sherman, S. D., & Macready, G. B. (1985). An investigation of hierarchic structure of acquisition for left-right identification tasks. Perceptual and motor skills, 61, 3, 1163-1170.
Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8, 481-520.
Siegler, R. S. (1981). Developmental sequences within and between concepts. Monographs of the Society for Research in Child Development, 46 (2, Serial No. 189).
Spada, H., & Kluwe, R. (1980). Two models of intellectual development and their reference to the theory of Piaget. In R. Kluwe & H. Spada (Eds.), Developm- ental model of thinking(pp.1-32). New York: Academic Press.
Spinillo, A, G. (2002). Children’s use of part–part comparisons to estimate probability. Journal of Mathematical Behavior, 21, 357–369.
Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconception based on item response theory. Journal of Educational Measurement, 4, 345-354.
Tatsuoka, K. K. (1986). Diagnosing cognitive errors: statistical pattern classification based on item response theory. Behaviormetrika, 19, 73-86.
Tatsuoka, K. K. (1995). Architecture of knoweledge structures and cognitive diagnosis: a statistical pattern recognition and classification approach. In P.D. Nichols, S. F. Chipman, & R. L. Brennan.(eds.), Cognitively diagnostic assessment (pp.327-359). Hillsdale, NJ: Lawrence Erlbaum Associates.
Thom, R. (1975). Structural stability and morphogenesis: an outline of a general theory of models. Reading, MA: Benjamin.
Van der Maas, H.L.J., & Molenaar, P.C.M. (1996). Catastrophe analysis of discontinuous development. In A.A. van Eye & C.C. Clogg (Eds.), Categorical variables in developmental research. Methods of analysis (pp.77-105). San Diego: Academic Press.
Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & m. Landau(Eds.), Acquisition of mathematics concepts and procedures (pp.127-174). New York: Academic Press.
Vergnaud, G. (1988). Multiplicative structures. In J. Hievert & M. Behr(Eds.), Number concepts and operations in the middle grades(pp.141-161). NCTM : Lawrence Erlbaum Associates.
Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In Hagenaars and McCutcheon, eds., Advances in latent class models. Cambridge, UK: Cambridge University Press.
Watts, D. M. (1983a). A Study of schoolchildren’s alternative frameworks of the concept of force. Europe Journal of Science Teaching, 5, 217-230.
Watts, D. M. (1983b). Some alternative views of energy. Physical Education, 18, 213-217.
Welzel, M. (1998). Do interviews really assess students’ knowledge? International Journal of Science Education, 20, 25-44.
White, R., & Gunstone, R. (1992). Prediction-observation-explanation. In White, R. & Gunstone, R., (Eds.) Probing understanding (pp.44-64). London: The Falmer Press.