跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佳蓉
研究生(外文):Chia-Jung Chen
論文名稱:應用可變增益電路之氫氣偵測器之研究
論文名稱(外文):Investigation of a variable-gain circuit for hydrogen detector
指導教授:林坤緯林坤緯引用關係
指導教授(外文):Kun-Wei Lin
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:氫氣感測微機電系統可變增益電容比例
外文關鍵詞:hydrogenMEMSvariable gaincapacitance-ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本文提出由MEMS技術,結合標準CMOS技術製作之3乘3陣列式氣體感測器,藉由陣列式的多重輸入,能同時偵測不同製程之氫氣感測器。本感測晶片在製程上有兩大優點:1.元件陣列結構為懸橋式,當加熱器加熱時,懸橋結構能有效隔絕熱效應所造成之影響。2.採用Poly 2為微加熱器及感測電極材料,在製程上有良好相容性。元件結合可變增益放大電路,透過電路將元件感測之信號放大,以利量測及分析。以往的氫氣感測電路,大都將感測器及處理電路分開製作,此種做法往往造成訊號在介面處失真。本研究以晶片設計搭配微機電技術,透過佈局將感測器及信號前置放大電路整合一起,可減少晶片面積與達到整合效果,整個晶片分微感測器與感測電路兩部分,感測器部分,材料選用與氫氣有較大反應之觸媒金屬Pd;感測電路部分,因不同濃度之氫氣會有不同感測值,因此本電路設計了可變增益放大功能,在以往的放大電路中,常使用電阻比例做為放大信號的比例,此方法易受製程偏移影響,因此在本電路中將使用電容比例做為信號放大的倍率,透過這種作法將有效的改善DC offset所造成的輸出準位偏移影響以及配合交換式運算技術,搭配不重疊時脈信號對放大電路改善取樣時所產生的功率消耗,透過本電路之實現可有效整合感測電路、降低成本以及功率消耗。
In this thesis, a 3×3 gas sensors array with on chip multiple input integrated circuitry by using microelectromechanical system (MEMS) was fabricated. Hydrogen sensors fabricated with different structures can be measured simultaneously. The hydrogen sensing chip has two advantages. First, the structure of the array has a cantilever beam, it can prevent the hot effect. Second the fabrication can consistent with CMOS technology. It’s easy to measure and analysis by using the chip with variable-gain.Traditionally, the hydrogen sensing device and the sensing chip were divided. It will restrict the application due to the noise at the interface between the device and chip. Our device integrate the hydrogen sensing device and sensing circuit on the same chip. Palladium (Pd) is selected as the catalytic metal. Further more in contrast to the conventional amplifier, using resistance-ratio, our design amplifier base on capacitance-ratio can prevent the influence of fabrication parameters. The DC offset also can be improved. Finally, the designed circuit has the advantages of low cost and low power consumption.
摘要 I
Abstract III
誌謝 IV
索引目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1氫氣感測器之需求 1
1-2氫氣的特性 1
1-3氣體感測器的型式及種類 2
1-3-1觸媒燃燒型 2
1-3-2半導體式氣體感測器 3
1-3-3場效電晶體型 4
1-3-4石英振動型 5
1-3-5固體電解質氣體感測器 5
1-3-6電化學式氣體感測器 6
1-4微機電系統 6
1-5研究動機 8
第二章 感測原理 11
2-1蕭特基結構 13
2-2蕭特基二極體結構元件之電流特性 15
2-3蕭特基二極體半導體式氣體感測機制 17
第三章 感測元件設計與製作 20
3-1感測元件結構 20
3-2感測元件材料 21
3-3加熱電阻的設計 21
3-4元件特性 23
3-5微機電系統的製造技術 24
3-6感測元件製作(微機電後製程) 25
第四章 電路設計製作與實驗討論 32
4-1 電路設計 32
4-1-1運算放大電路設計 32
4-1-2不重疊時脈信號產生電路 34
4-1-3交換式電容放大電路 36
4-2電路製作 38
4-3實驗環境- I-V 量測系統 40
4-4實驗量測與分析 40
第五章 結論與未來展望 43
5-1結論 43
5-2 未來展望 45
參考文獻 47
圖附錄 55
表附錄 95

表目錄
表1.1 氫氣的物理性質 95
表1.2 主要的氣體感測元件材料特性 96
表3.1 TSMC 0.35μm 2P4M 標準製程參數 97
表4.1理想放大器基本特性值 98
表4.2電路規格列表 99
表4.3 佈局驗證功能 100

圖目錄
圖2.1(a)兩端式元件 55
圖2.1(b)三端式元件 56
圖2.2 能帶關係變化 57
圖2.3 金屬半導體接面 58
圖2.4 N型半導體接面能帶關係 59
圖2.5 半導體接面能帶變化 60
圖2.6 施加偏壓之能帶變化圖 61
圖2.7 蕭特基接面電場分佈 62
圖2.8 氫氣感測吸附過程 63
圖3.1 整合型氣體感測器 64
圖3.2 感測元件 65
圖3.3感測器表面 66
圖3.4 加熱電阻示意圖 67
圖3.5 溫度與電阻變化曲線關係圖 68
圖3.6(a) 元件電壓-電流關係曲線圖 69
圖3.6(b) 元件電流-時間關係曲線圖 70
圖3.7 設計流程圖 71
圖3.8 4吋玻璃基板光罩 72
圖3.9 金屬層剝離流程圖 73
圖3.10 (a)後製程流程圖 74
圖3.10 (b)後製程流程圖 75
圖3.11(a) 感測陣列SEM圖 76
圖3.11(b) 感測陣列SEM圖 77
圖4.1 感測器架構圖 78
圖4.2 可變增益交換式電容運算放大電路圖 79
圖4.3不重疊時脈信號產生電路 80
圖4.4 RC主動式積分器 81
圖4.5 交換式電容積分器 82
圖4.6 交換式電容放大電路 83
圖4.7 單電晶體開關 84
圖4.8 電路佈局圖 85
圖4.9(a) 感測晶片實照圖 86
圖4.9(b) 感測晶片實照圖-電路部分 87
圖4.9(c) 感測晶片實照圖-感測陣列部分 88
圖4.10 實驗量測環境 89
圖4.11 感測訊號輸出波形 90
圖4.12 非重疊訊號輸出結果 91
圖4.13(a) 放大電路倍率改變之輸出結果 92
圖4.13(b) 放大電路倍率改變之輸出結果 93
圖4.13(c) 放大電路倍率改變之輸出結果 94
[1]J. Y. Li, “Introduced the gas sensor”, Industrial Materials, Apr. 1997, No.124, pp. 82-84.
[2]C. Y. Huang, “The mechanism and application studies of hydrogenation reaction for metal catalyst on zero-valent metal”, Master Thesis, Department of Environmental Engineering and Management Chaoyang University of Technology, 2004
[3]C. C. Liu, P. J. Hesketh, and G. W. Hunter, “Chemical microsensors”, Interface, 2004, Vol. 13, No. 2, pp. 22-27.
[4]M. C. Yang, K. Y. Tseng and C. T. Wang, “Carbon monoxide sensors and application of the principle”, Chemical Technology, Feb. 2000, Vol. 8, No. 2, pp. 158-167.
[5]M. H. Tseng, “Catalytic combustion type gas sensor”, Material and social, 1992, No. 68, pp. 57-61.
[6]Y. C. Chen, “Metal-oxide semiconductor-type gas sensors”, Material and social, 1992, No. 68, pp. 62.
[7]A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices”, New York: John Wily & Sons, 1993.
[8]C. Y. Chiu and T. C. Chou, “Chemical sensors and application of the principle”, Chemical engineering, 1993, Vol. 40, No. 3, pp. 120.
[9]B. J. Huang, “Solid-state Electrolyte Based Electrochemical-gas Sensors”, Chemistry (The Chinese Chem. Soc., Taipei), 2001, Vol. 59, No. 2, pp. 207-217.
[10]P. P. Tsai and M. H. Tseng, “Introduction of gas sensors, application and market”, Material and social, 1992, No. 68, pp.50-56.
[11]C. S. Tu, Y. C. Lo and L. W. Chu, “Nitrogen oxides on the Theory and Application of Sensor”, Chemical Technology, Feb. 2000, Vol. 8, No. 2, pp. 146-154.

[12]L. H. Chuang and P. C. Huang, “Oxygen sensor applications”, Chemical Technology, Feb. 2000, Vol. 8, No. 2, pp. 168-173.
[13]S. H. Chong, J. Jun and H.J. Kim, “The depth of depletion layer and height of energy barrier on ZnO under hydrogen”, Applied Surface Science, May 2001, Vol. 175-176, pp. 567-573.
[14]P. P. Tsai, “The new trend of gas sensors of the microelectromechanical components of product development”, Industrial Materials, 1999, No. 150, pp. 92-95.
[15]H, Pink, L. Treitinger and L. Vite, “Preparation of fast detecting SnO2 gas sensor”, Japanese Journal of Applied Physics, 3 Mar. 1980, Vol.19, No.3, pp. 513-517.
[16]P. P. Tsai, “Chemical micro-sensor of the gas micro-sensors”, Electron magazine, 1996, Vol. 2, No. 4, pp. 63-66.
[17]T. Takashi, “Oxygen sensor”, Sensors and Actuators, 1994, Vol. 14, No. 1, pp. 109-110.
[18]S. M. Sze, “Semiconductor Sensor”, John Wiley & Sons, New York, 1994, pp. 1-15.
[19]K. Najafi, “Smart sensor”, Journal of Micromechanics and Microengineerings, 1991, Vol. 1, pp. 86-102.
[20]C. L. Dai, “Fabrication of Micro Electro Mechanical sensors Using the standard IC Process”, Master Thesis, Department of Institute of Mechanical Engineering National Taiwan University, 1997.
[21]National Applied Research Laboratories of National Chip Implementation Center, “Dracula training manual”, 1996.
[22]S. R. Morrison, “Selectivity in semiconductor gas sensors”, Sensors and Actuators, 1987, Vol. 12, pp. 425-440.
[23]G. Heiland, “Homogeneous semiconductoring gas sensors”, Sensors and Actuators, 1982, Vol. 2, pp. 343-361.
[24]B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications”, Plenum, New York, 1984.
[25]M. Shih, The production of semiconductor device physics and technology: Gau Lih Book co., 2001, pp. 13-15.
[26]D. A. Neamen, “Semiconductor Physics and Devices”, Irwin, Boston, 1997.
[27]P. B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis”, J. Chem. Phys, 1953, Vol. 21, pp. 1531-1538.
[28]T. Seiyama, A. Kato, K. Fajiishi and M. Nagatahi, “A new detector for gaseous components using semiconductive thin films”, Analystical chemistry, 1962, Vol. 34, pp. 1502.
[29]P. J. Shaver, “Activated tungsten oxide gas detectors”, Appl. Phys. Lett., 1967, Vol. 11, pp. 255-257.
[30]H. M. Lin and S. C. Tseng, “Semiconductor materials nano special nature of the gas sensor”, Industrial Materials, Jan. 2000, No. 157, pp. 163-169.
[31]H. M. Lin, “Ultrafine particles of semiconductor gas sensing properties of materials”, Engineering Science & Technology Bulletin, NSC, Dec. 2001, No. 59, pp. 52-56.
[32]H. M. Lin, “Nano-chemical sensing materials”, Chemical Information and Business, Nov. 2002, No. 38, pp. 18-28.
[33]I. Lundstrom, M. Armgath, and L.G. Petersson, “Physics with catalytic metal gate chemical sensors”, Rev. Solid State Mater. Sci., 1989, Vol. 15, pp. 201-278.
[34]J. Liu, C. R. Oritz, Y. Z. Hang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p-type silicon”, Phys. Rev. B, 1991, Vol. 44, No. 16, pp. 8918-8922.
[35]H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V. McFarland, “Selective H atom sensors using ultrathin Ag-Si Schottky diodes”, J. Vac. Sci. Technol. A, 1999, Vol. 17, No. 4, pp. 1217-1220.
[36]W. P. Kang and Y. Gurbuzm, “Comparison and Analysis of Pd and Pt-GaAs Schottky Diodes for Hydrogen Detection”, J. Appl. Phys., 1994, Vol. 75, No. 12, pp. 8175.
[37]Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si Schottky barrier diodes”, Appl. Phys. Lett., 1990, Vol. 56, No. 7, pp. 641-643.
[38]I. Lundstrom and D. Soderberg, “Isothermal hydrogen desorption from palladium films”, Appl. Surf. Sci., 1982, No. 10, pp. 506-522.
[39]K. Christmann, “Interaction of hydrogen with solid surfaces”, Surf. Sci. Rep., 1988, No. 9, pp. 1-163.
[40]B. Keramati, J. N. Zemel, “Pd-thin-SiO2-Si diode. I. Isothermal variation of H2-induced interfacial trapping states”, J. Appl. Phys., 1982, No. 53, pp. 1091-1099.
[41]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface”, J. Appl. Phys., 1995, Vol. 78, No. 2, pp. 988-996.
[42]W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection”, J. Appl. Phys., 1994, Vol. 75, No. 12, pp. 8175-8181.
[43]Mechanical Industry Research Institute Industrial Technology Research Institute, “Micro-electro-mechanical systems technology and development status”, Industrial Technology Research Institute, Aug. 1997, pp. 89.
[44]Y. S. Lie, Z. Tang, J. Wu, P. C. H. Chan and J. K. O. Sin, “A low-power CMOS compatible integrated gas sensor using maskless tin oxide sputtering”, Sensors and Actuators B, 1998, Vol. 49, pp. 81-87.
[45]S. M. Sze, “Semiconductor Sensors, John Wiley and Sons”, 1994, pp. 388-396.
[46]M. H. Chen, “Design, Fabrication and Characterization of Semiconductor-Type Oxygen Gas Sensors”, Master Thesis, Department of Engineering Science National Cheng Kung University, 2003.
[47]H. Y. Chung, “PEO humidity sensor”, Master Thesis, Department of Materials Science and Engineering National Cheng Kung University, 2001.
[48]M. K. Tseng, “Study on Fabrication of Gas Sensor Using CMOS Standard Process Technology”, Master Thesis, Department of Electronic Engineering Chung Yuan Christian University, 2000.
[49]C. C. Yeh, “Study on Fabrication of Temperature Sensor and Operational Amplifier Using CMOS Standard Process Technology”, Master Thesis, Institute of Electrical and Mechanical Hua Fan University, 2000.
[50]S. L. Chang, “Design and Fabrication of Micro Thermal Chip With Sensors and Heaters”, Master Thesis, Institute of Aviation Space Engineering Research National Cheng Kung University, 2004.
[51]National Applied Research Laboratories of National Chip Implementation Center, “TSMC 0.35μm 2P4M Process Parameter Data”, 2005, Vol. 2-6, pp. 27.
[52]M. Zanini, J. H. Visser, L. Rimai, R. E. Soltis, A. Kovalchuk, D. W. Hoffman, E. M. Logothetis, U. Bonne, L. Brewer, O. W. Bynum and M. A. Richard, “Fabrication and properties of a Si-based high-sensitivity microcalorimetric gas sensor”, Sensors and Actuators A, Vol. 48, 1995, pp. 187-192.
[53]S. K. H. Fung, Z. Tang, P. C. H. Chan, J. K. O. Sin, P. W. Cheung, “Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications”, Sensors and Actuators A, Vol. 54, 1996, pp. 482-487.
[54]C. C. Lai, “The Study on the Design and Processing of CMOS Micro Sensors”, Master Thesis, Institute of Applied Mechanics National Taiwan University, 1996.
[55]J. J. F. Rijins, “CMOS Low-Distortion High-Frequency Variable-Gain Amplifier”, IEEE J. Solid-State Circuits, Jul. 1996, Vol. 31, No. 7, pp. 1029-1034.
[56]K. Philips and E. C. Dijkmans, “A variable-gain IF amplifier with -67 dBc IM3-distortion at 1.4 VPP output in 0.25μm CMOS”, in Symp. VLSI Circuits Digest Technical Papers, 2001, pp.81-82.
[57]C. C. Hsu and J. T. Wu, “A Highly Linear 125-Mhz CMOS Switched-Resistor Programmable-Gain Amplifier”, IEEE J. Solid-State Circuits, Oct. 2003, Vol. 38, pp.1633-1670.
[58]H. Dinc, P. E. Allen, S. Chakraborty, “A Low Distortion, Current Feedback, Programmable Gain Amplifier”, IEEE International Symposium on Circuits and Systems, 2005, Vol. 5, pp. 4819-4822.
[59]T. Sanz, S. Cehna and B. Calvo, “High Linear Digitally Programmable Gain Amplifier”, IEEE International Symposium on Circuits and Systems, 2005, Vol. 1, pp. 208-211.
[60]M. H. Ku, “Research and Application on Low-Voltage CMOS Rail-to-Rail Operational Amplifier”, Master Thesis, Institute of Electronic Engineering Chung Yuan Christian University, Jun. 2000.
[61]J. M. Khoury, “On the Design of Constant Settling Time AGC Circuits”, IEEE Transactions on Circuits and System, Mar. 1998, Vol. 45, pp. 283-294.
[62]H. T. Chang, “Design And Implementation Of Electrocardiograph Analog Signal Processing Unit”, Master Thesis, Institute of Electronic Engineering Chung Yuan Christian University, Jun. 1997.
[63]L. L. Huang, “Research on CMOS IC Design Technique for Low Frequency Analog Signal Processing Module Application”, Master Thesis, Institute of Electronic Engineering Chung Yuan Christian University, Jun. 1997.
[64]D. A. Johns and K. Martin, “Analog Integrated Circuits Design”, John Wiley &Sons, Inc, 1997.
[65]S. S. Cheng, “Design of Low Voltage Switch Capacitor Filter and Its Applications”, Master Thesis, Institute of Electronic Engineering Chung Yuan Christian University, Jun. 1998.
[66]K. C. Chiang, “Integrated Circuit Design of Biopotential Amplifier”, Master Thesis, Institute of Electrical Engineering National Taiwan University, Jun. 1999.
[67]R. Gregorian and G. C. Temes, “Analog MOS integrated circuits for signal processing”, New York, Wiely-Interscience, 1986.
[68]Z. J. Yu, “Complementary metal-oxide exchange of half-effect transistor capacitor filter design and analysis”, Master Thesis, Institute of Electronic Engineering National Chiao Tung University, Jun. 1985.
[69]H. Dinc, P. E. Allen and S. Chakraborty, “A Low Distortion, Current Feedback, Programmable Gain Amplifier”, IEEE International Symposium on Circuits and Systems, 2005, Vol. 5, pp. 4819-4822.
[70]Z. J. Yu, “New switched-capacitor differentiators and their applications in the design of switched-capacitor filters”, Doctoral Thesis, Institute of Electronic Engineering National Chiao Tung University, Jun. 1989.
[71]D. C. von Grunigen, R. Sigg, M. Ludwig, U. W. Brugger, G. S. Moschytz and H. Melchior, “Integrated Switched-Capacitor Low-Pass Filter with Combined Anti-Aliasing Decimation Filter for Low Frequencies”, IEEE J. Solid-State Circuits, Dec. 1982, Vol. SC-17, pp. 1024-1028.
[72]G. S. Moschytz, “MOS Switched-Capacitor Filters: Analysis and Design”, IEEE Press, New York, 1984.
[73]P. R. Gray, B. A. Wooley, and R. W. Brodersen, “Analog MOS Integrated Circuits, II”, IEEE Press, New York, 1989.
[74]P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design”, Oxford University Press, New York, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top