|
Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. Christopher J.C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In Proceedings of ICML ’05, pages 89–96. ACM, 2005. Christopher J.C. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with nons- mooth cost functions. In Advances in Neural Information Processing Systems (NIPS), volume 18, pages 193–200. MIT Press, 2006. Jaime S. Cardoso and Joaquim F. Pinto da Costa. Learning to classify ordinal data: The data replication method. Journal of Machine Learning Research, 8:1393–1429, 2007. Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal rank for graded relevance. In Proceedings of CIKM ’09, pages 621–630. ACM, 2009. Wei Chu and Zoubin Ghahramani. Gaussian processes for ordinal regression. Journal of Machine Learning Research, 6:1019–1041, 2005. David Cossock and Tong Zhang. Subset ranking using regression. In Proceedings of COLT ’06, pages 605–619. Springer, 2006. Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural Infor- mation Processing Systems (NIPS), volume 14, pages 641–647. MIT Press, 2002. Andrew Frank and Arthur Asuncion. UCI machine learning repository, 2010. Download- able at http://archive.ics.uci.edu/ml. Eibe Frank and Mark Hall. A simple approach to ordinal classification. In Proceedings of ECML ’01, pages 145–156. Springer, 2001. Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933– 969, 2003. Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189–1232, 2001. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The WEKA data mining software: An update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2003. Kalervo J‥arvelin and Jaana Kek‥al‥ainen. Cumulated gain-based evaluation of IR tech- niques. ACM Transactions on Information Systems, 20(4):422–446, 2002. Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of KDD ’02, pages 133–142. ACM, 2002. Sotiris Kotsiantis and Panagiotis Pintelas. A cost sensitive technique for ordinal classifica- tion problems. In George Vouros and Themistoklis Panayiotopoulos, editors, Methods and Applications of Artificial Intelligence, volume 3025 of Lecture Notes in Computer Science, pages 220–229. Springer Berlin / Heidelberg, 2004. Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, and Michael De Groeve. Predic- tion of ordinal classes using regression trees. Fundam. Inf., 47:1–13, 2001. Ping Li, Christopher J.C. Burges, and Qiang Wu. McRank: Learning to rank using multi- ple classification and gradient boosting. In Advances in Neural Information Processing Systems (NIPS), volume 19. MIT Press, 2007. Hsuan-Tien Lin and Ling Li. Reduction from cost-sensitive ordinal ranking to weighted binary classification. Technical report, National Taiwan University, April 2011. Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3:225–331, 2009. Yuanhua Lv, Taesup Moon, Pranam Kolari, Zhaohui Zheng, Xuanhui Wang, and Yi Chang. Learning to model relatedness for news recommendation. In Proceedings of WWW ’11, pages 57–66. ACM, 2011. Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval effectiveness. ACM Transactions on Information Systems, 27, 2008. Ananth Mohan, Zheng Chen, and Kilian Q. Weinberger. Web-search ranking with initial- ized gradient boosted regression trees. Journal of Machine Learning Research Work- shop and Conference Proceedings, 14:77–89, 2011. Ross J. Quinlan. Learning with continuous classes. In Proceedings of IJCAI ’92, pages 343–348. World Scientific, 1992a. Ross J. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning). Morgan Kaufmann, 1992b. Matthew Richardson, Amit Prakash, and Eric Brill. Beyond PageRank: Machine learning for static ranking. In Proceedings of WWW ’06, pages 707–715. ACM, 2006. Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank by optimizing NDCG measure. In Proceedings of SIGIR ’00, pages 41–48. ACM, 2000. Maksims N. Volkovs and Richard S. Zemel. BoltzRank: Learning to maximize expected ranking gain. In Proceedings of ICML ’09, pages 1089–1096. ACM, 2009. Yong Wang and Ian H. Witten. Induction of model trees for predicting continuous classes. In Proceedings of ECML ’97, pages 128–137. Springer, 1997.
|