跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/13 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭淑玲
研究生(外文):Shwu-Ling, Peng
論文名稱:蘭花活性成分白楊素與蝴蝶蘭水萃物抗發炎功效之探討
論文名稱(外文):Downregulating of pro-inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by active compound (chrysin) and water extract of orchid flower
指導教授:翁家瑞翁家瑞引用關係
學位類別:碩士
校院名稱:台南應用科技大學
系所名稱:生活服務產業系生活應用科學碩士班
學門:民生學門
學類:生活應用科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:125
中文關鍵詞:蝴蝶蘭水萃物、白楊素、發炎反應、介白素、基質金屬蛋白酶
外文關鍵詞:water extract of orchid flowerchrysininflammationinterleukinmatrix metalloproteinase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
慢性發炎是導致自身免疫性系統失調與大多數疾病發生的共同原因之一,有效抑制發炎將能提高疾病的治癒能力。蘭花除觀賞用途外,近年來有研究指出蝴蝶蘭水萃物可以美白,抗 UVA、UVB 所造成的皮膚傷害;而白楊素是一種存在於蘭花中的天然類黃酮類化合物,自古為中國的傳統藥材之一,具有抗發炎特性和神經保護作用。過去文獻指出白楊素可抑制經由脂多醣 (Lipopolysaccharide, LPS) 誘導的發炎反應,阻斷活化神經微膠細胞 (Microglia) NF-κB 和 JNK 的表現量,減少發炎反應。本研究探討使用白楊素 (chrysin, 0.5-10 M) 與蝴蝶蘭水萃物 (water extract of Phalaenopsis orchid flower, WEPF, 25-200 ng/mL) 對 LPS 誘導的小鼠 RAW 264.7 巨噬細胞抗發炎作用與參與機制。利用ELISA、RT-PCR、Western blot 和 Gelatin Zymography 方法測定相關發炎因子水平的變化。結果顯示,白楊素在濃度10 M,蝴蝶蘭水萃物在濃度 200 ng/mL 時對小鼠 RAW264.7 巨噬細胞產生之發炎介質具有顯著抑制作用,藉由減少促炎細胞激素,如:介白素(interleukin, IL)-1, -6、腫瘤壞死因子(tumor necrosis factor, TNF)-的分泌,降低基質金屬蛋白酶 (Matrix metalloproteinase, MMP)-9 的表現,同時抑制 I激酶活性,使 p65 進入細胞核內,進行基因轉錄與調控下游促發炎細胞激素。綜合以上發現,白楊素與蝴蝶蘭水萃物可顯著抑制 LPS 誘導小鼠 RAW 264.7 巨噬細胞的發炎反應,並透過阻斷通過 NF和 MAPK 信號通路,使 MMP-9 表現量減少,以及降低 TNF-、IL-1與IL-6 分泌,達到抗小鼠巨噬細胞發炎的功效。

Inflammation is one of the mechanisms for autoimmune disorders and a common feature of most diseases. Effective suppression of inflammation is a crucial means for disease treatment. Orchids, a group of angiosperms belonging to the Orchidaceae family, are traditionally used as an herbal medicine and many constituents obtained from different parts of orchid with biological activities including anti-inflammation. In the present study, we used water extract of Phalaenopsis aphrodite subsp. Formosana (WEPF) and Chrysin, a flavonoid in Cymbidium, to evaluate and compare their anti-inflammatory properties in a lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophage cell line. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to determine the toxicity of compounds on cells. Nitric oxide (NO) and inducible NO synthase (iNOS) were assayed by commercial kits. The levels of several inflammation-related factors were determined by enzyme-linked immunosorbent assay (ELISA), gelation zymography and RT-PCR. The molecular signaling was analyzed by Western blot. The results showed that the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1 in RAW 264.7 cells were significantly induced by LPS at a concentration of 100 ng/mL; the induced proteins were then depressed by treating chrysin and WEPF at a concentration higher than 10 M, 200 ng/mL, respectively. The gelatinolytic activity and mRNA expression of matrix metalloproteinase (MMP)-9 were inhibited by chrysin and WEPF higher than 10 M and 100 ng/mL, respectively. The levels of NO and iNOS were both increased by the treatment of WEPF or chrysin. Additionally, MAPKs and NF-B signaling were inactivated by chrysin and WEPF. In conclusion, chrysin and WEPF both could inhibit the LPS-stimulated inflammation in RAW264.7 cells by suppressing the levels of NO, iNOS, IL-6, IL-1β, TNF- and MMP-9 through inactivating MAPKs and NF-B. Chrysin and WEPF might use to improve the treatment of inflammation-related diseases.

中文摘要………………………………………………………………… II
英文摘要………………………………………………………………… IV
目次……………………………………………………………………… VII
圖次……………………………………………………………………… IX
表次……………………………………………………………………… XIV
縮寫表…………………………………………………………………… XV
第一章、前言……………………………………………………………… 1
第二章、文獻探討………………………………………………………… 4
壹、 發炎介紹………………………………………………………… 4
一、 發炎反應…………………………………………………… 4
二、 發炎與巨噬細胞………………………………………… 15
三、 發炎與基質金屬蛋白酶-9………………………………… 31
四、 發炎與癌症關係…………………………………………… 34
貳、 蘭科植物………………………………………………………… 37
一、 蘭科植物特徵……………………………………………… 37
二、 台灣常見蘭花介紹………………………………………… 38
三、 蘭花的生理特性…………………………………………… 40
四、 蘭花的化學成分和藥用性質……………………………… 41
參、 白楊素介紹……………………………………………………… 51
一、 白楊素的來源與特性……………………………………… 51
二、 白楊素傳統保健功效……………………………………… 51
三、 白楊素現代醫學研究 …………………………………… 51
肆、 研究目的………………………………………………………… 58
伍、 研究架構………………………………………………………… 59
第三章、材料與方法……………………………………………… ……… 60
壹、實驗材料與試藥……………………………………………………60
貳、實驗方法……………………………………………………………63
第四章、結果………………………………………………………………72
第一部分:白楊素對以脂多醣誘發小鼠巨噬細胞抗發炎作用研究……72
一、白楊素對小鼠 RAW 264.7 巨噬細胞之毒性測試…………72
二、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞一氧化氮
生成抑制影響………………………………………………72
三、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生iNOS蛋白的影響………………………………………73
四、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生 MMP-9 酵素活性影響……………………………………73
五、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生促炎
細胞激素 (IL-1, IL-6, TNF-) 的影響…………………73
六、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞IL-1、
IL-6 與 TNF- mRNA表現之影響………………………74
七、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞中磷酸化
ERK1/2、JNK 及 p38 蛋白質表現之影響………………75
八、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞轉錄因子
NF-B 之影響………………………………………………75
九、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生COX-2 與 PGE2 蛋白表現之影響………………………75

第二部分:蝴蝶蘭水萃物對以脂多醣誘發小鼠 RAW267.4 巨噬細胞抗發炎作用研究………………………………………………………………77
一、 蝴蝶蘭水萃物對小鼠 RAW 264.7 巨噬細胞之毒性測試77
二、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生一氧化氮生成抑制影響………………………………77
三、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7巨噬細胞產生 iNOS 蛋白的影響…………………………………77
四、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生 MMP-9 酵素活性影響……………………………78
五、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞產生促炎細胞激素(IL-1IL-6, TNF-)的影響…………78
六、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞 IL-1、IL-6 與 TNF- 之mRNA表現之影響…………79
七、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞中磷酸化 ERK1/2、JNK 及 p38 蛋白質表現之影響…80
八、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞轉錄因子 NF-B 之影響…………………………………80
九、 蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7巨噬細胞產生 COX-2 與 PGE2 蛋白表達之影響…………………81
第五章、討論………………………………………………………………82
第六章、結論………………………………………………………………111
參考文獻……………………………………………………………………112

圖目錄
圖1、發炎反應……………………………………………………………4
圖2、MAPK 訊息傳遞路徑………………………………………………7
圖 3、細胞核轉錄因子傳遞訊息路徑……………………………………11
圖 4、NF-B 在腫瘤發展進程的角色……………………………………14
圖 5、巨噬細胞吞噬凋亡細胞過程………………………………………16
圖 6、細胞內毒素 LPS 構造……………………………………………17
圖 7、腫瘤壞死因子在免疫調節與腫瘤的雙重作用……………………20
圖 8、IL-6 與 發炎作用機制……………………………………………22
圖 9、中性粒細胞趨化因子 IL-8 訊息傳遞路徑………………………24
圖 10、L-精胺酸的吸收代謝與合成一氧化氮的關係…………………27
圖 11、PGE2 生成路徑……………………………………………………30
圖 12、MMP-9 與發炎……………………………………………………33
圖 13、癌症與慢性發炎之相關訊息調控路徑…………………………36
圖 14、旭東威士忌 品種權字第 A00595 號……………………………39
圖 15、類黃酮類基本架構…………………………………………………49
圖 16、白楊素結構式 ……………………………………………………52
圖 17、慢性發炎與癌症……………………………………………………55
圖 18、皮膚微發炎模型……………………………………………………56
圖 19、白楊素對小鼠 RAW 264.7巨噬細胞之毒性測試………………89
圖 20、白楊素對 LPS誘發小鼠RAW 264.7 巨噬細胞一氧化氮生成
量影響……………………………………………………………90
圖 21、白楊素對 LPS 誘導小鼠 RAW 264.7 巨噬細胞產生 iNOS 蛋白表現之影響……………………………………………………91
圖 22、白楊素對 LPS 誘導小鼠 RAW 264.7 巨噬細胞產生 MMP-9 活性之影響………………………………………………………92
圖 23、白楊素對 LPS 誘導小鼠 RAW 264.7 巨噬細胞產生細胞激素 TNF-之影響……………………………………………………93
圖 24、白楊素對 LPS 誘導小鼠 RAW 264.7 巨噬細胞產生細胞激素 IL-6 之影響………………………………………………………94
圖 25、白楊素對 LPS 誘導小鼠 RAW 264.7 巨噬細胞產生細胞激素
IL-1之影響………………………………………………………95
圖 26、白楊素對 LPS 誘發小鼠 RAW 264.7 巨噬細胞 IL-1、IL-6
與 TNF-mRNA表現之影響…………………………………96
圖27、白楊素對LPS 誘導小鼠 RAW 264.7 巨噬細胞中磷酸化 ERK1/2、JNK 及 p38 蛋白質表現之影響 ……………………97
圖 28、白楊素對LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌 NF-B 轉錄因子蛋白表現之影響…………………………………………98
圖 29、白楊素對LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌 COX-2 與 PGE2蛋白表現之影響……………………………………………99
圖 30、蝴蝶蘭水萃物對小鼠 RAW 264.7 巨噬細胞之毒性測定………100
圖 31、蝴蝶蘭水萃物對 LPS 誘發小鼠RAW 264.7 巨噬細胞一氧化氮生成量影響……………………………………………………101
圖 32、蝴蝶蘭水萃物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌
iNOS蛋白表現之影響……………………………………………102
圖 33、蝴蝶蘭水萃物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞分
MMP-9 活性之影響……………………………………………103
圖34、蝴蝶蘭水萃物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌
細胞激素 IL-1之影響…………………………………………104
圖 35、蝴蝶蘭水萃物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌
細胞激素 IL-6之影響……………………………………………105
圖 36、蝴蝶蘭萃取物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞分泌
細胞激素 TNF-之影響…………………………………………106
圖37、蝴蝶蘭水萃物對 LPS 誘發小鼠 RAW 264.7 巨噬細胞IL-1、IL-6與 TNF-之mRNA表現之影響…………………………107
圖 38、蝴蝶蘭水萃物對 LPS 誘導小鼠 RAW 264.7 巨噬細胞中
磷酸化 ERK1/2、JNK 及 p38 蛋白質表現之影響……………108
圖 39、蝴蝶蘭水萃物對LPS 誘導小鼠 RAW 264.7 巨噬細胞產生
NF-B 轉錄因子蛋白表現之影響………………………………109
圖 40、蝴蝶蘭水萃物對LPS 誘導小鼠 RAW 264.7 巨噬細胞產生
COX-2 與 PGE2蛋白表現之影響………………………………110


表目錄

表 一、蘭花成分-二級代謝產物種類與藥理作用………………………42
表 二、蘭花成分-多環芳香烴類與藥理作用……………………………44


莊于彥 (2005)。文心蘭花色與色素組成之研究。國立屏東科技大學
農園生產系碩士論文。
陳秋媛 (2010)。以活體動物及離體細胞培養模式探討木犀草素對於
TGFβ1調控上皮―間質轉化及細胞轉移能力的影響及其作用機
轉 (國科會專題研究計畫成果報告編號:NSC 98-2320-B-343
-001)。嘉義:南華大學自然醫學研究所。
黃玟瑄 (2010)。紅肉李萃取物對於以 H2O2 誘發PC-12神經細胞氧
化壓力之影響。台北醫學大學保健營養學研究所碩士論文。
陳加忠 (2012)。當蝴蝶蘭開花株成為原料: 國立中興大學生物系統
工程研究室。上網檢索日期 2012年05月22
http://amebse.nchu.edu.tw/new_page_404.htm
鄭武燦,《台灣植物圖鑑》下冊,國立編譯館主編,頁1584。

USDA. Floriculture crops 2007,2008 summary, National agricultural
Statistics service.(http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-24-2008).
Albert, S. Baldwin. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-B. J. Clin, Invest. 2001. 107(3): 241-246.
Alexander, P., Eldar, Z., Shiri, P., Rony, S. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation . Biochim. Biophys. Acta. 2011. 1813: 1619-1633.
Algood, H. M. S. and Cover T. L. Helicobacter pylori Persistence: an Overview of Interactions between H. pylori and Host Immune Defenses. Clinical microbiology reviews. 2006. 19: 597–613.
Allen, D. G., Whitehead, N. P., Froehner, S. C. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nirtic Oxide in the Development of Muscular Dystrophy. Physiol. Rev. 2016. 96(1): 253-305.
Anchoori, R. K., Harikumar, K. B., Batchu, V. R., Aggarwal, B. B., Khan, S. R., Inhibition of IB kinase NF-B by a novel synthetic compound SK. Bioorg. Med. Chem. 2009. 18(1): 229-235.
Avadhani, P. N., Goh, C.J., Rao, A. N. and Arditti. Garbon fixation in orchids. P. 173-193. In: Orchid Biology: Reviews and Perspective II. J. Arditti(ed). Comell Univ. Press. 1982. New York.
Bardwell, A. J., Frankson, E., Bardwell, L. Selectivity of Docking Sites in MAPK Kinases. J. Biol. Chem. 2009. 284(19): 13165-13173.
Bredt, D. S., and Snyder, S. H. Isolation of nitric oxide synthetase, a Calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA. 87: 682-685.
Bode, J. G., Ehlting, C. Haussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell. Signal. 2012. 24: 1185-1194.
Burrage, P. S., Mix, K. S., Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 2006. 11: 529-543.
Candelario-Jalil, E., Yang, Y., Rosenberg, G. A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009. 158: 983–994.
Chakraborti, S., Mandal, M., Mandal, A., Chakraborti, T. Regulation of matrix metalloproteinases: An over. Mol.Cell. Biochem. 2003. 253: 269-285.
Chun, J. M., Nho, K. J., Kim, H. S., Lee, A. Y., Moon, B. C., Kim, H. K. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-B and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC. Complement. Altern Med. 2014. 10;14:234. doi: 10. 1186/1472-6882-14-234.
Choi, K., Kim, M., Ryu, J., Choi, C. Ginsenosides compound K and Rh (2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. Neurosci. Lett. 2007. 421: 37-41.
Colotta, F., Allavena, P., Sica, A., Garlanda, C., Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009. 30(7): 1073-1081.
Coussens, L. M., Werb, Z. Inflammation and cancer. Nature. 2000. 19-21; 420(6917): 860-867.
Dressler, R. L. The Orchids: natural history and classification, Cambride, Mass. Harvard University Press, 1990.
Crotty Alexander, L. E., Shin, S., Hwang, J. H. Inflammatory Diseases of the Lung Induced by Conventional Cigarette Smoke: A Review. Chest. 2015. doi: 10.1378/chest.15-0409.
Das SP, Bhattacherjee SK. Orchids. In: Bhattacherjee SK, editor. Herbaceous perennials and shade loving foliage plants. Jaipur, India: Pointer Publishers; 2006.
Deryugina, E. L. and Quigley, J. P. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015. 44-46C: 94-112.
Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N. G., Stansfeld, P. J., He, C., Zhang, Y., Wang, W., Dong, C. Stractural basis for outer membrane lipopolysaccharide insertion. Nature. 2014. 511(7507): 52-56.
Esmon, C. T. Regulation of blood coagulation. Biochim. Acta. 2000. 1477: 349-360.
Eqberts, J. H., Cloosters, V., Noack, A., Schniewind, B., Thon, L., Klose, S., Kettler, B., von Forstner,C., kneitz, C., Tepel, J., Adam, D., Wajant, H., Kalthoff, H., Trauzold, A. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer .Res. 2008. 68(5): 1443-1450.
Farina, A. R and Mackay, A. R. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers. 2014. 27: 240-296.
Fu, C.H., Chen, Y.W., Hsiao, Y.Y., Pan, Z.J., Liu, Z.H., Huang, Y.M., Tsai, W.C., and Chen, H.H. OrchidBase: A collection of sequences of transcriptome derived from orchids. Plant and Cell Physiology. 2011. 52: 238-243.
Giacomoni, P. U. and Rein, G. A mechanistic model for the aging of human skin. 2004. 35(3): 179-184.
Grivennikov, S., Greten, F. R., Karin, M. Immunity, inflammation, and cancer. Cell. 2010. 140(6): 883-899.
Hamalainen, M., Nieminen, R., Vuorela, P., Heinonen, M., & Moilanen, E. Antiinflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007. 25 (1): 1-10.
Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M., Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science. 2009. 323: 802-806.
Herschman, H. R. Prostaglandin synthase 2. Biochim. Biophys. Acta. 1996. 1299(1): 125-140.
Hegazy, S. K., El-Bedewy, M. M. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World. j. Gastroenterol. 2010. 16(33): 4145-4155.
Hew, C. J. and Yong. J. W. H. 1996. Photosynthesis. P. 38-92. The physiology of tropical orchids in relation to the industry. World Scientific Publishing.
Hossain, M. M. Therapeutic orchids:traditional uses and recent advances – Anoverview. Fitoterapia. 2011. 82 (2): 102-140.
Hua, H., Li, M., Luo, T., Yin, Y., Jiang, Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell. Mol. Life Sci. 2011. 68: 3853-3868.
Joyce, E. R. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 2005. 9: 267-285.
Kim, E. S., Kim, J. S., Kim, S. G., Hwang, S., Lee, C. H., Moon, A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J. Cell Sci. 2011. 124: 2220-2230.
Kirsten, L. P., Richard, T. P., Robert, J. L. Box2/7TM receptors activate the ERK/MAPK cascade by several different pathways. Nature Reviews Mol. Cell. Bio. 2002. 3: 639-650.
Knowles, R. G., and Moncada, S. Nitric oxide synthases in manmals. Biochem. J. 1994. 298(Pt 2): 249-258.
Kovalovich, K., DeAnqelis, R. A., Li, W., Furth, E. E., Ciliberto, G., Taub, R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatoloqy. 2000. 31(1): 149-159.
Kumada, M., Kihara, S., Sumitsuji, S., Kawamoto, T., Matsumoto, S., Ouchi, N., Arita, Y., Okamoto, Y., Shimomura, I., Hiraoka, H., Nakamura, T., Funahadhi, T. and Matsuzawa, Y. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc. Biol. 2003. 23(1): 85-89.
Lal, G., Kulkami, N., Nakayama, Y, Singh, A. K., Seth, A. K., Sethi, A., Burrell, B. E., Brinkman, C. C., Lwami, D., Zhang, T., Hehlqans, T., Bromberg, J. S. IL-10 from marginal zone precursor B cells controls the controlsthe differentiation of Th17, Tfh and Tfr cells transplantation tolerance. Immunol. Lett. 2016. Pii: S0165-2478(16)30002-30005.
Pendino, K. J., Gardner, C. R., Shuler, R. L., Laskin J. D., Durham,S. K., Barton, D. S., Ohnishi, S. T., Ohnishi, T., Laskin, D. L. Inhibition of ozone-induced nitric oxide synthase expression in the lung by endotoxin. Am. J. Respir. Cell. Mol. Biol. 1996. 14(6): 516-525.
Lee, S. J., Lee, I. S., Mar, W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,6-penta-o-galloyl-D-glucose in murine macrophage cells. Arch.Pham.Res. 2003. 26(10): 832-839.
Li, L., Li, Y. M., Liu, Z. L., Zhang, J. G., Liu, Q., Yi, L. T. The renal protective effects of Anoectochilus roxburghii polysaccharose on diabetic mic induced by high-diet andstreptozotocin. J. Ethnopharmacol. 2015. S0378-8741(15)30258-0.
Litvinova, L., Atochin, D. N., Fattakhov, N., Vasilenko, M., Zatolokin, P., Kirienkova, E. Nitric oxide and mitochondria in metabolic syndrome. Front. Physiol. 2015. Fed 17;6:20. Doi: 10.3389/fphys. 2015. 00020. eCollection 2015.
Lim, H., Jin, J. H., Park, H. P., Kim, H. P. New synthetic anti-inflammatory chrysin analog, 5,7-dihydroxy-8-(pyridine-4yl)flavones. Eur. J. Pharmacol. 2011. 670: 617-622.
Lin, Y. H., Chang, C., & Chang, W. C. Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell, Tissue and Organ Culture. 2000. 62(1): 21-25.
Lin, C. C., Tseng, H. W., Hsieh, H. L., Lee, C. W., Wu, C. Y., Cheng, C. Y., Yang, C. M. Tumor necrosis factor-alpha induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-kappaB in A549 cells. Toxicol. Appl. Pharmacol. 2008. 229: 386-398.
Liu, L. M., Liang, D. Y., Ye, C. G., Tu, W. J., Zhu, T. The UII/UT System Mediates Upregulation of Proinflammatory Cytokines through p38 MAPK and NF-κB Pathways in LPS-Stimulated Kupffer Cells. PLoS One. 2015. 10(3): e0121383. doi: 10.1371/ journal. pone.0121383.
Ma, Y., Ge, A. Zhu, W., Lin, Y, N., Ji, N. F., Zha, W. J., Zhang, J. X., Zeng, X. N., Huang, M. Morin Attenuates Ovalbumin-Induced Airway inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling. Oxid. Med. Cell. Longev. 2016. 2016:5843672. Doi: 10. 1155/2016/5843672.
Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006. 11: 1696- 1701.
Mantovani, A, Allavena, P, Sica, A, Balkwill, F. Cancer-related inflammation. Nature. 2008. 454: 436-444.
Matsumoto, S., Hara, T., Naqaoka, M., Mike, A., Mitsuyama, K., Sako, T., Yamamoto, M., Kado, S., Takada, T. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine modle of inflammatory bowel disease and colitis-associated cancer. Immunoloqy. 2009. 128(1 Suppl): e170-180.
Marx, J. Inflammation and Cancer:The Link Grows Stronger. Science. 2004. 306: 966-968.
Murakami, Y., Tanabe, S., Suzuki, T. High-fat Diet-induced intestinal Hyperpermeability is Associated with increased Bile Acids in the Large Intestine of Mice. J. Food. Sci. 2016. 81(1): H216-222.
Nee, L. E., McMorrow, T., Campbell, E., Slattery, C., Ryan, M. P. TNF-alpha and IL-1beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney. Int. 2004. 66: 1376-86.
Nussler, A. K., Billiar, T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 1993. 54(2): 171-178.
O''Hara, A. M., Bhattacharyya, A., Bai, J., Mifflin, R. C., Ernst, P. B., Mitra, S., Crowe, S. E. Tumor necrosis factor (TNF)-alpha-induced IL-8 expression in gastric epithelial cells: role of reactive oxygen species and AP endonuclease-1/redox factor (Ref)-1. Cytokine. 2009. 46(3): 359-369.
Ola, A., Kerkelä, R., Tokola, H., Pikkarainen, S., Skoumal, R., Vuolteenaho, O., Ruskoaho, H. The mixed-lineage kinase 1-3 signalling pathway regulates stress response in cardiac myocytes via GATA-4 and AP-1 transcription factors. Br.J. Pharmacol. 2010. 159(3): 717-725.
Oleninick, N. L., Morris, R. L., Belichenko, L. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 2002. 1(1): 1-21.
Pack, L and Cadenas, E. Oxidants and antioxidants revisited. New concepts of oxidative stress. Free Radic Res.2007. 41(9): 951-2.
Pérez, G., Orchids:A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plant. Res. 2010. 4(8):592-638.
Prusty, B. K., Hedau, S., Singh, A., Kar, P., Das, B.C. Selective suppression of NF-Bp65 in hepatitis virus-infected pregnant women manifesting severe liver damage and high mortality. Mol. Med. 2007. 13(9-10): 518-526.
Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J. Ulevitch, R. J., Davis, R. J. Pro-inflammatory cytokines and environmental stresscause p38 mitogen-activated protein activation by dual phosphorylation on tyrosine and threonine. J.Biol.Chem.1995. 270(13): 7420-7426.
Rao, P., Hayden, M. S., Long, M., Scott, M. L., West, A. P., Zhang, D., Oeckinghaus, A., Lynch, C., Hoffmann, A., Baltimore, D., Ghosh, S. IkappaBbeta acts to inhibit and activate gene expression during inflammatory response. Nature. 2010. 466(7310): 1115-1119.
Rastrick, J.M., Stevenson, C. S., Eltom, Grace. M., Davies, M., Kilty, I., Evans, S.M., Pasparakis, M., Catley, M. C., Lawrence, T., Adcock, I. M., Belvisi, M. G., Birrell, M. A. Cigarette smoke induced airway inflammation is independent of NF-B signaling. PLoS. One. 2013. 8(1) :e54128.
Raza, A., Franklin, M. J., Dudek, A. Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 2010. 85: 593-598.
Reuben, P. M and Cheung, H. S. Regulation of matrix metalloproteinase (MMP) gene expression by protein kinases. Front. Biosci. 2006. 11: 1199-1215.
Reddy, S. A., Shelar, S. B., Dang, T. M., Lee, B. N., Yang, H., Onq, S. M., Nq, H. L., Chui W. K., Wong, S. C. Sulforaphane and methylcarbonyl analogs inhibit the LPS-stimulated inflammatory response in human monocytes through modulating cytokine production, suppressing chemotactic migration and phagocytosis in a NF-B -and MAPK-dependent manner. Int. Immunopharmacol. 2015. 24(2): 440-450.
Ricciardolo, F. L., Sterk, P. J., Gaston, B., Folkerts, G. Nitric oxide in health and disease of respiratory system. Physiol. Rev. 2004. 84(3): 731-765.
Ruimi, N., Rwashdeh, H., Wasser, S., Konkimalla, B., Efferth, T., Borgatti, M., Gambari, R., Mahajna, J. Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-kappaB and MAPK activities in RAW 264.7 macrophage cells. Int. J. Mol. Med. 2010. 25: 421-432.
Roskoski, R. J. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 2012. 66: 105-143.
Rossol, M., Heine, H., Meusch, U., Quandt, D., Klein, C., Sweet, M. J., Hauschildt, S. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol. 2011. 31: 379-446.
Schetter, A. J., Heeqaard, N. H., Harris, C. C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinoqenesis. 2010. 31(1): 37-49.
Schindler, J. F., Monahan, J. B., Smith, W. G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res. 2007. 86: 800-811.
Schwacha, M. G., Chaudry, I. H., Alexander, M. Regulation of macrophage IL-10 production postiniury via beta2 integrin signaling and the P38 MAP kinase pathway. Shock. 2003. 20(6):529-535.
Silva, E. M., Souza, J. N. S., Rogez, H., Rees,J. F., & Larondelle, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonianregion. Food Chemistry. 2007. 101 (3): 1012-1018.
Singh, M., Arseneault, M., Sanderson, T., Murthy, V., Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer''s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem. 2008. 56: 4855-4873.
Shalapour, S., Karin, M. Immunty, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest. 2015. 125 (9): 3347-3345.
Shen, Y., Tian, P. Li, D., Wu, Y., Wan, C., Yang, T., Chen, L., Wang, T., Wen, F. Chrysin suppresses cigarette smoke-induced airway inflammation in mic. Int. Clin. Exp. Med. 2015. 15;8 (2): 2001-2008.
Shime, H., Yabu, M., Akazawa, T., Kodama, K., Matsumoto, M., Seya, T., Inoue, N. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J. Immunol. 2008. 180 (11): 7175-7183.
Subramaniyan, J., Krishnan, G., Balan R., Mgj, D., Ramasamy, E., Ramalingam, S., Veerabathiran, R., Thandavamoorthy, P., Mani, G. K., Thiruvengadam, D. Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats. Mol. Cell. Biochem. 2014. 395: 65-76.
Stangl, V., Lorenz, M., Ludwig, A., Grimbo, N., Guether, C., Sanad, W., Ziemer, S., Martus, P., Baumann, G., Stangl, K. The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. J. Nutr. 2005. 135(2): 172-178.
Stix, G. A malignant flame. Understanding chronic inflammation, which contributes to heart disease, Alzheimer''s and a variety of other ailments, may be a key to unlocking the mysteries of cancer. Sci Am. 2007. 297: 60-67.
Souza, L. C., Antunes, M. S., Filho, C. B., Del Fabbro,L., de Gomes, M. G., Goes, A. T., Donato, F., Priqol, M., Boeira, S. P., Jesse, C. R. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol. Biochem. Behav. 2015. 134: 22-30.
Takala, A., Jousela, I., Takkunen, O., Kautiainen, H., Jansson, S. E., Orpana, A., Karonen, S. L., Repo, H. A prospective study of inflammation markers in patients at risk of indirect acute lung injury. Shock. 2002. 17(4): 252-257.
Thannickal, V. J. and B. L. Fanburg . Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2000. 279(6): L1005-28.
Trikha, M., Corringham, R., Klein, B., Rossi, J. F. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin. Cancer. Res. 2003. 9(13): 4653-4665.
Tsai, W.C., Huang, S.C., Chen, Y.W., Hsiao, Y.Y., Pan, Z.J., and Chen, H.H. Gene discovery using next generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC. Genomics. 2011. 12:360.
Tung, W. H., Tsai, H. W., Lee, I. T., Hsieh, H. L., Chen, W. J., Chen, Y. L., Yang, C. M. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signallingdependent on MAPKs and reactive oxygen species. Br. J. Pharmacol. 2010. 167: 1566-1583.
Vandooren, J., Van den Steen, P. E., Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol. 2013. 48: 222-272.
Wang, J. and Mazza, G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPA/IFN-gamma-activated RAW 264.7 macrophages. J. Aqric. Food. Chem. 2005. 50(4): 850-857.
Watt, D. G., Roxburgh, C. S., White, M., Chan, J. Z., Horgan, p. g., McMillan, D. C. A Survey of Attitudes towards the Clinical Application of Systemic inflammation Based Prognostic Scores in Cancer. Mediators. Inflamm. 2015 : 842070. doi: 10. 1155/2015/842070.
Weng, C. J. and Yen, G. C. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities (review). Cancer Metastasis Rev. 2012. 31: 323-351.
Winter, K., Wallace, B. J., Stocker, G. C., Roksandic. Z. Crassulacean acid metabolism In Australian vascular epiphytes some related species Oecologia. 1983. 57:129-141.
Wu, J. B., Chuang, H. R., Yang, L. C., Lin, W. C. A standardized aqueous extract of Anoectochilus formosanus amelioratamide-inducedliver fibrosis in mic: the role of Kupffer cells. Biosic. Biotechnol Biochem. 2010. 74(4): 781-787.
Wu, C. H., Wu, C. F., Huang, H. W., Jao, Y. C., Yen, G. C. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells. Mol. Nutr. Food. Res. 2009. 53: 984-995.
Wu, N. L., Fang, J. Y., Chen, M., Wu, C. J., Huang, C. F. Chrysin protects epidermal. Keratinocytes from UVA-and UVB-induced damage. J. Aqric.Food. Chem. 2011. 59(15): 8391-8400.
Wu, X., Kim, D., Young, A. T., Haynes C. L. Exploring inflammatory disease drug effects on neutrophil function. Analyst. 2014. 139 (16): 4056-4063.
Woo, K. J., Jenong, Y. J., Inoue, H., Park, J. W., Kwon, T. K. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS. Lett. 2005. 579: 705-711.
Wynn, T. A., Chawla, A., Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature. 2013. 496: 445-455.
Xia, Y., Lian, S., Khoi, P. N., Yoon, H. J., Joo, Y. E., Chay, K. O., Kim, K. K., Do Jung, Y. Chrysin inhibits tumor promoter-induced MMP-9 expression by block AP-1 via suppression of ERK and JNK pathways in gastric cancer cells. PLoS. One. 2015. 10 (4): e0124007.
Yang, X. D., Jianq, S., Wang, G., Zhang, J., Zhu, J. S. Link of obesity and gastrointestinal cancer: crossroad of inflammation and oxidative stress. J. Biol. Requl. Homeost. Aqents. 2015. 29(4): 755-760.
Yeom, M., Kim, J. H., Min, J. H., Hwang, M. K., Jung, H. S., Jung, H. S., Sohn, Y. Xanthii Fructus Inhibits Inflammatory Responses in LPS-stimulated RAW 264.7 Macrophages through Suppressing NF-B and JNK/p38 MAPK. J. Ethnopharmacol. 2015. S0378-8741(15)30220-8.
Yin, Q. H., Yan, F. X., Zu, X. Y., Wu, Y. H., Wu, X. P., Liao, M. C., Deng, S. W., Yin, L. L., Zhuang, Y. Z. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology. 2012. 64: 43-51.
Zhang, F., Banker, G., Liu, X., Suwanabol, P. A., Lengfeld, J., Yamanouchi, D., Kent, K. C., Liu, B. The novel function of advanced glycation end products in regulation of MMP-9 production. J. Surg. Res. 2011. 171: 871-876.
Zhu, J., Zhang, Y., Wu, G., Xiao, Z., Zhou, H., Yu, X. Inhibitory effects of oligochitosan on TNF-IL-1and nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Mol. Med.Rep. 2015. 11(1): 729-733.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top