跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳育齊
研究生(外文):Yu-Chi Chen
論文名稱:具弧型微電極陣列之介電泳分離晶片
論文名稱(外文):DEP Chip with Arc-Shaped Microelectrodes Array for Particles Separation
指導教授:莊承鑫莊承鑫引用關係
指導教授(外文):Cheng-Hsin Chuang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:介電泳微流道分離
外文關鍵詞:DielectrophoresisMicrofluidicSeparation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出新型外凸式弧型微電極陣列之介電泳粒子分離晶片,利用負介電泳的方式,使能更有效地分離不同粒徑的微粒與細胞。設計兩組反方向的電極陣列,第一組電極陣列是以加大電壓(50Vpp)來產生負介電泳力,使得不同尺寸的粒子能在第二組反方向的電極陣列前完成排列,當排列好的粒子進入第二組電極陣列時,電極施予10Vpp電壓,粒子將再次受到負介電泳力的影響而使不同大小的粒子,僅受到粒徑大小來影響分離效果產生分離。本研究比較梯形、內凹式與外凸式弧型微電極陣列之介電泳效果,以CFD-RC (CFD Research Corporation)商用軟體進行模擬,由模擬結果顯示,外凸式弧狀電極之設計,能使電場與電場平方之梯度(E2)於微流管道剖面方向不致呈現快速下降,如此能加大介電泳力作用的有效範圍,並可減少E2於剖面方向的變化,使大、小粒子所受的介電泳力差異加劇,提升分離的效能。此外,本研究欲驗證此模擬結果,使用一般黃光微影製程技術在玻璃基板上製作弧型微電極陣列,利用圖案化的SU-8厚膜光阻為模仁,翻製PDMS微流管道結構,並利用晶片接合的技術將PDMS與玻璃基板接合形成分離晶片,實驗結果顯示,此電極設計能有效地分離17μm與8μm不同粒徑的微粒,並成功應用於血球細胞和膀胱癌末期細胞J82之細胞分離。
This research presents a microfluidic chip with arc- shape electrodes array (ASEA) for separation of different-size particles/Cells based on negative dielectrophoresis (nDEP). The purpose of ASEA is to generate the dielectrophoretic force perpendicular to the microchannel direction within the gap between each pairs of arc-shape electrodes. The DEP chip consisted of two regions of ASEA; first ASEA was design for aligning all particles floating along with the wall of microchannel before enter the second ASEA region; the configuration of second ASEA was upside down with first region, thus, the DEP force could move particles from the one side of microchannel toward the other side with different magnitude corresponding to its size, consequently, different size of particles can be separated within the second ASEA region. In this study, three typically electrode shapes, trapezoidal shape, convex-arc shape and concave-arc shape, were investigated for constructing an electric field gradient along the perpendicular direction to fluid flow by numerical simulation. A convex arc-shape electrode can provide better separation effect due to the larger effective area of DEP force and relative small variation of ▽E2 as indicated in the simulation results. Therefore, we fabricated a PDMS microchannel with two convex ASEAs for demonstration of the separation function between 17μm and 8μm polystyrene particles. This method can provide a continuous and high throughput separation of different-size bioparticles once they have similar dielectric properties that cannot separated by traditional DEP approach.
摘要 iii
Abstract iv
致謝 v
目次 i
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機及目的 7
1.4 研究方法 8
第二章 介電泳原理 10
2.1 介電泳效應(Dielectrophoresis) 10
2.1.1 介電泳力之理論推導 12
2.2 藉由介電泳效應進行分離之理論推導 23
第三章 數值分析模擬 24
3.1 理論模組 24
3.2 三種電極型式之模型 25
3.3 介電泳之分析 27
3.3.1 三種電極型式之電場與電場平方梯度模擬分析 27
3.4 三種不同的電極間距之模型 29
3.4.1 三種電極間距之電場與電場平方梯度比較 30
第四章 晶片製作與實驗方法 32
4.1 實驗設備 32
4.2 晶片設計 35
4.3 光罩製作 36
4.4 晶片製作流程 37
4.4.1 晶片清洗 37
4.4.2 金屬薄膜蒸鍍 38
4.4.3 黃光微影製程 39
4.4.4 PDMS微流道製作 41
4.4.5 晶片封裝 43
4.5 實驗架構與量測方法 44
第五章 實驗的結果 45
5.1 17μm粒子之負介電泳實驗 45
5.2 8μm粒子之負介電泳實驗 47
5.3 17μm與8μm粒子之分離實驗 47
5.3 改變不同電壓與頻率對微粒分離之影響 49
5.4 細胞之分離實驗 50
5.4.1 血球細胞之分離實驗 50
5.4.2 血球細胞和膀胱癌細胞之分離實驗 52
5.5 結果與討論 53
第六章 結論 55
參考文獻 56
符號彙編 58
作者簡介 59
1. Larry J. Kricka, Jing Cheng, “Biochip Technology,” Harwood Academic Publishers, Philadelphia P.A, (2001).
2. H. A. Pohl “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” J Applied Physics., vol. 22(7), pp. 869-871 (1951).
3. H. A. Pohl “Some Effects of Nonuniform Fields on Dielectrics,” J Applied Physics., vol. 29, pp. 1182-1188 (1958).
4. J. Crane and H.A. Pohl, “Use of the balanced-cell technique to determine properties of single yeast cells,” J. Biol. Phys. Vol. 5, pp. 49-74, (1977)
5. X. B. Wang, Y Huang, P. R. C. Gascoyne, F. F. Becker, “Dielectrophoretic manipulation of particles,” IEEE Trans. on Industry Applic. Vol 33, 3, pp. 660-669, (1997).
6. E. G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski and K. V. I. S. Kaler, “A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant,” J. Microbiological Methods, Vol. 58, pp. 387-401, (2004).
7. H. Li and R. Bashir, “Dielectrophoretic Separation and Manipulation of Live and Heat-treated Cells of Listeria on Microfabricated Devices with Iinterdigitated Electrodes”, Sensors and Actuators B 86, pp. 215-221, (2002).
8. S. Choi and J. K. Park, “Microfluidic system for dielectrophoretic separation based on a trapezoidalelectrode array,” Lab on a Chip, Vol.5, pp. 1161–1167, 2005.
9. Y. Li, C. Dalton, H. J. Crabtree, G. Nilsson and K. V. I. S. Kaler, “Continuous Dielectrophoretic Cell Separation Microfluidic Device”, Lab on a chip, vol. 7, pp. 239-248, (2007).

10. N. Demierre, T. Braschler, R. Muller, P. Renaud, “Focusing and Continuous Separation of Cells in a Microfluidic Device using Lateral Dielectrophoresis”, Sensors and Actuators B, Vol. 132, pp. 388-396, (2008).
11. C. Iliescu, D. P. Poenar, M. Carp and F. C. Loe, “A Microfluidic Device for Impedance Spectroscopy Analysis of Biological Samples”, Sensors and Actuators B, Vol. 123, pp. 168-176, (2007).
12. Molnar, B., Sipos, F., Galamb, O., Tulassay, Z., 2003. Digest. Diseases 21, 320–325.
13. X. Zhou, D. P. Poenar, K. Y. Liu, W. Li, M. S. Tse, H. Chen, C. K. Heng and S. N. Tan, “Glass-based BioMEMS Devices for Optically Excited Cell Impedance Measurement”, Sensors and Actuators B, Vol. 133, pp. 301-310, (2007).
14. M. Varshney, Y. Li, B.Srinivasan, S. Tung, “A Label-free Microfluidics and Interdigitated Array Microelectrode-based Impedance Biosensor in Combination with Nanoparticles Immunoseparation for Detection of Escherichia Coli O157:H7 in Food Samples”, Sensors and Actuators B, Vol. 128, pp. 99–107, (2007).
15. M. Varshney, Y. Li, “Interdigitated Array Microelectrode Based Impedance Biosensor Coupled with Magnetic Nanoparticle–antibody Conjugates for Detection of Escherichia coli O157:H7 in Food Samples”, Biosensors and Bioelectronics, vol. 22, pp. 2408–2414, (2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊