跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳寵文
研究生(外文):Chung-Wen Chen
論文名稱:多餘裕度機械臂之裕度指標
論文名稱(外文):Redundancy Indices of Redundant Manipulators
指導教授:鄭芳田鄭芳田引用關係
指導教授(外文):Fan-Tien Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:64
中文關鍵詞:多餘裕度機械臂裕度指標裕度機械臂
外文關鍵詞:Redundant ManipulatorsRedundancy IndicesRedundancyManipulators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
裕度指標是用來量化多餘裕度機械臂運動學之裕度的新量測方法。根據裕度指標,我們不但可以求得多餘裕度機械臂的裕度,也可隨時得知機械臂每一軸角速度的界限。在求裕度指標的同時,我們也考慮了機械臂在運動學上的限制,如:各軸的角度、角速度及角加速度等的限制。而且,有關力矩方面的限制也都可以加以考慮。在多餘裕度機械臂的多目標應用方面,本論文對:窗型障礙物避除、各軸限制的避除、奇異點避除、免於漂移等,將有相關的描述說明。裕度指標不但很容易求得,而且可以應用於各種的多餘裕度機械臂。
本論文以三軸平面機械臂、四軸平面機械臂與七軸CESAR機械臂為三個例子來證明:應用裕度指標可以使機械臂更省時的完成工作。由模擬的結果可以看出,利用裕度指標來幫我們作路徑規劃可以使機械臂節省不少工作時間。在沒有應用裕度指標的情況下,三軸、四軸及七軸機械臂完成個別的工作需要11.2秒、10.6秒及20秒;可是,如果應用裕度指標的話,則只需6.96秒、7.56秒與12.26秒。由此可見,利用裕度指標來幫我們做路徑規劃的確能讓機械臂更有效率。

A novel measure, called Redundancy Indices, is proposed to quantify the amount of redundancy for kinematically redundant manipulators. With the Redundancy Indices, we can not only compute the total redundancy of a redundant manipulator but also monitor the rate range of each joint. Many kinematic constraints, such as joint-angle limits, joint-rate limits, and joint-acceleration bounds, are involved in the proposed measure. Furthermore, the dynamic effects, such as joint-torque bounds, can be included as well. Multiple-goal optimization for window-shaped obstacle avoidance, joint-limit avoidance, singularity avoidance, and drift free are also described and resolved. The Redundancy Indices is easy to compute and can be applied to all types of redundant manipulators.
Straight-line motion planning to reduce the execution time for a 3-DOF planar manipulator, a 4-DOF planar manipulator, and a 7-DOF CESAR manipulator are used as examples to exemplify the applications of the Redundancy Indices. Simulation results show that utilization of the Redundancy Indices in the motion planning can reduce the execution time significantly. Specifically, the execution time of the motion planning with/without Redundancy Indices are 6.96/11.2 seconds, 7.56/10.6 seconds, and 12.26/20.0 seconds for the 3-DOF planar manipulator, the 4-DOF planar manipulator, and the 7-DOF spatial manipulator, respectively.

CONTENTS
page
ABSTRACT............................................................................................... i
LIST OF FIGURE....................................................................................... iv
LIST OF TABLES....................................................................................... v
1 Introduction............................................................................................ 1
1.1 Introduction...................................................................................... 1
1.2 Organization..................................................................................... 3
2 General Formulation................................................................................ 5
2.1 General Formulation......................................................................... 5
2.2 General Form of Objective Functions............................................... 8
3 Various Goals for Resolving Kinematic Redundancy.............................. 10
3.1 Window-Shaped Obstacle Avoidance............................................... 10
3.2 Joint-Limit Avoidance...................................................................... 17
3.3 Singularity Avoidance...................................................................... 18
3.4 Drift Free.......................................................................................... 21
3.5 Discussion........................................................................................ 21
4 Redundancy Indices................................................................................ 23
4.1 Definition of Redundancy Indices..................................................... 23
5 Applications of Redundancy Indices........................................................ 28
5.1 Conventional Straight-Line Motion Planning.................................... 28
5.2 Straight-Line Motion Planning with Redundancy Indices................. 30
6 Simulation Results.................................................................................... 36
6.1 3-DOF Planar Manipulator................................................................ 36
6.2 4-DOF Planar Manipulator................................................................ 42
6.3 7-DOF CESAR Manipulator.............................................................. 46
7 Summary and Conclusions....................................................................... 54
APPENDIX.................................................................................................... 56
Redundancy Indices for Considering Joint Torque Constraints................. 56
BIBLIOGRAPHY........................................................................................... 60

[1] F.-T. Cheng, Y.-D. Lu, and Y.-Y. Sun, "Window-Shaped Obstacle Avoidance for a Redundant Manipulator," in Proc. 1997 IEEE Int. Conf. on Robotics and Automation, pp. 556-561 vol. 1.
[2] T. F. Chan and R. V. Dubey, "A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Manipulators," Proc. 1993 IEEE Int. Conf. Robotics and automat., pp. 395-402, 1993.
[3] A. Liegeois, "Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms," IEEE Trans. Syst., Man, Cybern., vol. SMC-7, no. 12, pp. 868-871, Dec. 1977.
[4] R. V. Mayorga and A. K. C. Wong, "A Singularities Prevention Approach for Redundant Robot Manipulators," Proc. 1990 IEEE Int. Conf. Robotics Automat., pp. 812-817, 1990.
[5] D. E. Whitney, "The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators," Trans. ASME J. Dynamic Syst. Meas. Contr., pp. 303-309, Dec. 1972.
[6] F.-T. Cheng, J.-S. Chen, and F.-C. Kung, "Study and Resolution of Singularities for a 7-DOF Redundant Manipulator," IEEE Trans. Industrial Electronics, vol. 45 3, pp. 469-480, June 1998 .
[7] C. W. Wampler, II, "Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods," IEEE Trans. Syst. Man. Cyber., vol. SMC-16, no. 1, pp. 93-101, Jan./Feb. 1986.
[8] I. D. Walker and S. I. Marcus, "Subtask Performance by Redundancy Resolution for Redundant Robot Manipulators," IEEE J. Robotics Automat., vol. 4, no. 3, pp. 350-354, June 1988.
[9] J. M. Hollerbach and K. C. Suh, "Redundancy Resolution of Manipulators through Torque Optimization," IEEE J. Robotics Automat., vol. RA-3, no. 4, pp. 308-316, 1987.
[10] T.-H. Chen, F.-T Cheng, Y.-Y, Sun and M.-H. Hung, "Torque Optimization Schemes for Kinematically Redundant Manipulators," Journal of Robotic System, vol. 11, no. 4, pp. 257-269, June 1994.
[11] F.-T. Cheng and M.-S. Shih, "Multiple-Goal Priority Considerations of Redundant Manipulators," Robotica, vol. 15, pp. 675-691, 1997.
[12] C. A. Klein and C. H. Hung, "Review of Pseudoinverse control for use with Kinematically Redundant Manipulator," IEEE Trans. Systems, Man, and Cybern.,vol. SMC-13, no. 2, pp. 245-250, 1983.
[13] T. Yoshikawa, "Analysis and Coutrol of Robot Manipulators with Redundancy," Robotics Research: The First International Symposium, M. Brady and R. Paul, Eds., Cambridge, MA: MIT Press, 1984, pp. 735-747.
[14] C. A. Klein and B. E. Blaho," Dexterity Measure for the Design and Control of Kinematically Redundant Manipulators," Int. J. Robotics Res., vol. 6, no. 2, pp. 72-83, 1987.
[15] C. M. Gosselin, "Dexterity Indices for Planar and Spatial Robotic Manipulators," Proc. IEEE Int. Conf. Robotics and Automation (Cincinnati, OH), May 1990, pp. 650-655.
[16] R. V. Mayorga, B. Ressa, and A. K. C. Wong, "A Dexterity Measure for Robot Manipulators," Proc. IEEE Int. Conf. Robotics and Automation (Cincinnati, OH), May 1990, pp. 656-661.
[17] P. H. Chang, "Development of a Dexterity Measure for Kinematically Redundant Manipulators," Proc. American Control Conf. (Pittsburgh, PA), June 1989, pp. 496-506.
[18] T. Yoshikawa, "Dynamic Manipulability of Robot Manipulators," IEEE Int. Conf. Robotics and Automation, St. Louis, MO, Mar. 1985.
[19] Graettinger, T. J. and Krogh, B. H., "The Acceleration Radius: a Global Performance Measure for Robotic Manipulators," IEEE J. of Robotics and Automation, 4(1), 1988.
[20] Zhanfang Zhao, Zhen Wu, Jilian Lu, Weihai Chen, Guanghua Zong, "Dynamic Dexterity of Redundant Manipulators," IEEE Int. Conf., Intelligent Systems for the 21st Century, Systems, Man and Cybernetics,pp. 928-933, vol.1Z, 1995.
[21] JadranLenar?i?, "On the Quantification of Robot Redunancy," Proc. IEEE Int. Conf. Robotics and Automation Detroit, Michigan, May 1999.
[22] F.-T. Cheng, T.-H. Chen, and Y.-Y. Sun, "Resolving Manipulator Redundancy under Inequality Constraints," IEEE Trans. on Robotics Automat., vol. 10, no. 1, pp. 65-71, February 1994.
[23] F.-T. Cheng, R.-J. Sheu, and T.-H. Chen, "The Improved Compact QP Method for Resolving Manipulator Redundancy," IEEE Transactions on Systems, Man, and Cybernetics, (to appear) 1996.
[24] H. Zghal, R. V. Dubey, and J. A. Euler, "Collision Avoidance of a Multiple Degree of Redundancy Manipulator Operating Through a Window," Trans. ASME, Dynamic Syst. Meas. and Contr., vol. 114, pp. 717-721, December 1992.
[25] Y. Nakamura and H. Hanafusa, "Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control," Trans. ASME J. Dynamic Syst. Meas. Contr., vol. 108, pp. 163-171, Sep. 1986.
[26] A. Balestrino, G. De Maria and L. Sciavicco, "Robust Control of Robotic Manipulators," Preprints of the 9th IFAC World Congress, vol. 6, pp. 80-85, 1984.
[27] P. Chiacchio and B. Siciliano, "Achieving Singularity Robustness: An Inverse Kinematic Solution Algorithm for Robot Control," IEE Control Engineering Series 36 -- Robot Control: Theory and Applications, K. Warwick and A. Pugh Eds., Peter Peregrinus Ltd., pp. 149-156, 1988.
[28] W. A. Wolovich and H. Elliott, "A Computational Technique for Inverse Kinematics," Proc. 23rd IEEE Conference on Decision and Control, pp. 1359-1363, 1984.
[29] M. Kir?anski and M. Bori?, "Symbolical Singular Value Decomposition for PUMA Robot and Its Application to Robot Operation near Singularities," accepted for publication at Int. J. of Robotics Research, 1993.
[30] M. Kir?anski, "Inverse Kinematic Problem near Singularities for Simple Manipulators: Symbolical Damped Least-Squares Solution," Proc. 1993 IEEE Int. Conf. Robotics Automat., vol. 1, pp. 974-979, Atlanta, 1993.
[31] A. A. Maciejewski and C. A. Klein, "Numerical Filtering for The Operation of Robotic Manipulators through Kinematically Singular Configurations," Journal of Robotic Systems, vol. 5, no. 6, pp. 527-552, 1988.
[32] A. A. Maciejewski and C. A. Klein, "The Singular Value Decomposition: Computation and Application to Robotics," Int. J. of Robotics Research, vol. 8, no. 6, pp. 63-79, 1989.
[33] H. Zghal, R. V. Dubey and J. A. Euler, "Efficient Gradient Projection Optimization for Manipulators with Multiple Degrees of Redundancy," Proc. 1990 IEEE Int. Conf. on Robotic and Automat., vol. 2, pp. 13-18, May 1990.
[34] T. Yoshikawa, "Manipulability of Robotic Mechanisms," Int. J. Robotics Res., vol. 4, no. 2, pp. 3-9, 1985.
[35] P. H. Chang, "A Dexterity Measure for Kinematic Control of Redundant Manipulators," Proc. American Control Conf., pp. 496-502, June 1989,.
[36] T. M. Abdel-Rahman, "A Generalized Practical Method for Analytic Solution of the Constrained Inverse Kinematics Problem of Redundant Manipulators," Int. J. Robotics Res., vol. 10, no. 4, pp. 382-395, Aug. 1991.
[37] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, John Wiley & Sons, Inc., Canada, 1989.
[38] C. A. Klein and K. B. Kee, "The Nature of Drift in Pseudoinverse Control of Kinematically Redundant Manipulators," IEEE Trans. Robotics Automat., vol. 5, no. 2, pp. 231-234, Apr. 1989.
[39] C. A. Klein and A. I. Chirco, "Dynamic Simulation of a Kinematically Redundant Manipulator System," J. Robotic Syst., vol. 4,no. 1, pp. 5-23, 1987.
[40] K. Cleary, "Incorporating Multiple Criteria in the Operation of Redundant Manipulators," Proc. 1990 IEEE Int. Conf. Robotics and Auto., pp. 618-624, 1990.
[41] J. A. Pamanes and S. Zeghloul, "Optimal Placement of Robotic Manipulators Using Multiple Kinematic Criteria," Proc. 1991 IEEE Int. Conf. Robotics and Auto., pp. 933-938, 1991.
[42] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, "Resolved-Acceleration Control of Mechanical Manipulators," IEEE Trans. on Automatic Control, vol. AC-25, no. 3, pp. 236-241, June 1980.
[43] F.-T. Cheng, T.-H. Chen, and Y.-Y. Sun, "Resolving Manipulator Redundancy Under Inequality Constraints," IEEE Trans. on Robotics and Auto., vol. 10, no. 1, pp. 65-71, February 1994.
[44] Y.-S. Lin, "Elementary Linear Algebra," vol. 5, pp. 72, May 1984.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top