跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳延
研究生(外文):LIN, CHIA-YEN
論文名稱:聯邦無跡卡爾曼濾波器於雙頻紅外線搜索與追蹤感測器網路之應用研究
論文名稱(外文):Application Study of Federated Unscented Kalman Filter on Dual-Band Infrared Search and Track Sensor Networks
指導教授:馮力威馮力威引用關係
指導教授(外文):FONG, LI-WEI
口試委員:鍾澍強黃天玉馮力威
口試委員(外文):CHUNG, SHU-CHIANGHUANG, TIEN-YUFONG, LI-WEI
口試日期:2018-06-28
學位類別:碩士
校院名稱:育達科技大學
系所名稱:資訊管理所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:67
中文關鍵詞:聯邦濾波器無跡卡爾曼濾波器雙頻紅外線搜索與追蹤感測器網路
外文關鍵詞:Federated FilterUnscented Kalman FilterDual-Band Infrared Search and Track Sensor Networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於無人空中拍照飛行機器人日漸盛行,人員操作不當導致發生意外,甚至闖越軍事禁區拍攝也時有所聞。有鑑於此,政府修訂相關法律以規範禁止飛越區域。當執法時,現行政策須有民眾檢舉或由相關執法單位人員至相關地點巡查。為節省時間、人力、費用及掌握電子證據,需要採用多個觀測站 (內含雙頻紅外線搜索與追蹤感測器),並藉由多觀測站組成的感測器網路之聯邦濾波器 (Federated Filter) 進行目標追蹤。這個方法主要使用雙頻紅外線搜索與追蹤感測器取得含雜訊的角度量測數據及含雜訊的被動距離量測數據,將這些數據傳送至區域處理器 (聯邦子濾波器),該處理器則採用無跡卡爾曼濾波器 (Unscented Kalman Filter, UKF) 進行狀態估計,最後再傳送至全域處理器 (聯邦主濾波器) 進行資訊融合。在感測器層級方面,透過雙頻紅外線搜索與追蹤感測器在球面座標系中量測目標的被動測距、方位角與俯仰角並傳輸至區域處理器。在區域處理器中,UKF係使用參考直角座標系對目標運動進行狀態估計的軌跡描述。UKF係經由非線性無跡轉換 (Unscented Transformations, UT) 來處理狀態向量與誤差共變異矩陣的遞推與更新,讓估計算法更接近系統的非線性本質。最後,再將各區域處理器的狀態估計資訊傳送至全域處理器,該處理器使用聯邦主濾波器進行資訊融合,得到最後目標狀態估計並同時進行資訊反饋。為驗證演算法的有效性,本論文使用蒙地卡羅電腦模擬的方法進行測試。經過重複模擬實驗,演算法在追蹤精確度上有極佳的表現,從模擬的結果可得知,本論文所提出的演算法,適用於飛行物體的追蹤應用。

關鍵詞:聯邦濾波器、無跡卡爾曼濾波器、雙頻紅外線搜索與追蹤感測器網路。

In recent years, unmanned aerial photographing of flying robots has become increasingly popular, and accidents have occurred due to improper operation of personnel, and even shooting in military forbidden areas has been heard. In view of this, the government revised the relevant laws to regulate the prohibition of over flight. When enforcing the law, the current policy must be reported by the public or patrolled by relevant law enforcement agencies personnel to the relevant locations. In order to save time, manpower, cost, and control of electronic evidence, multiple stations including dual-band infrared search and track sensors are needed, and target tracking is performed through sensor network federated filter calculations. The method is developed to obtain noisy data of target in passive ranging and angles and then sends the measurement data to dedicated local processor (federated sub-filter). However in the sensor level, the target range and the angles of azimuth and elevation are measured by each dual-band infrared search and track sensor in the sphere coordinate system. Each local processor uses the Unscented Kalman Filter (UKF) to perform state estimation and finally transmits the information to the global processor for information fusion. The target state is estimated by UKF in the reference rectangular coordinate system. Then the UKF handles the recursion and update of the state mean vector and the error covariance matrix via the Unscented Transformations (UT), which makes the estimation algorithm closer to the nonlinear nature of the system. Finally, the state information of each local processor is transmitted to the global processor (federated master filter) to integrate these state estimations to a final state estimation for system output and information feedback. To test the effectiveness of the algorithm, Monte Carlo computer simulation technique is adopted. After repeated simulation experiments, the algorithm has excellent performance in tracking accuracy. It can be known from the simulation results that the algorithm proposed in this thesis is suitable for the tracking application of flying objects.

Keywords: Federated Filter, Unscented Kalman Filter, Dual-Band Infrared Search and Track Sensor Networks.

指導教授推薦書 i
論文口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 2
1.2 研究目的 5
1.3 研究流程 7
第二章 文獻探討 9
2.1 紅外線搜索與追蹤感測器 9
2.2 感測器網路 15
2.3 無跡卡爾曼濾波 16
2.4 資訊融合 17
2.5 聯邦濾波器 18
第三章 研究步驟與方法 20
3.1 多感測器網路追蹤架構 20
3.2 感測器量測模式 21
3.3 區域處理器層級之建立 23
3.5 蒙地卡羅電腦模擬 29
3.6 電腦模擬流程圖 29
第四章 模擬結果與分析 32
4.1模擬初始值設定 32
4.2物體飛行運動軌跡測試場景1 34
4.3物體飛行運動軌跡測試場景2 43
4.4物體飛行運動軌跡測試場景3 50
4.5模擬結果與分析 57
第五章 結論與未來研究方向 60
5.1結論 60
5.2未來研究方向 60
附錄A 62
附錄B 63
參考文獻 64





[1] 甘堯江、林雪淳, “應用於環境監測之無線感測網路閘道器設計”,水保技術,2009
[2] 利用智慧家庭感測器取得更多資訊(Digi-Key 歐洲編輯群) https://www.digikey.tw/zh/articles/techzone/2016/jan/making-smart-home-sensors-tell-us-more,2016
[3] 馮力威、林佳延 “聯邦無跡卡爾曼濾波器於雙頻紅外線搜索與追蹤感測器網路之應用研究”,2018 創新管理與資訊實務研討會,苗栗縣造橋鄉,中華民國108年5月25日。
[4] 何友、修建娟、張晶煒、關欣,“雷達資料處理及應用(第2版)”,電子工業出版社,2012
[5] 周宏仁、敬忠良、王培德,“機動目標跟蹤”,國防工業出版社,1991
[6] 鄒啟明、萬亞民、曹 萌,“網路魚雷組合導航資訊融合技術模擬”,魚雷技術,2016
[7] 被動式人體紅外線感測與溫度感測模組http://www.icpdas.com.tw/root/news/products/2015/2015072007_tc.php,2015
[8] 被動式紅外線感測器
http://idminer.com.tw/product/被動式-ir-紅外線感測器/
[9] 胡乃平、丁紀祥,“一種基於資料融合的組合式溫度感測器”,電腦與現代化,2016
[10] 黃士一,“無線感測網路中資料聚集方法介紹”,ICL TECHNICAL JOURNAL,2007
[11] 雷磊,“紅外線與紅外成像技術的發展應用分析”,大科技,2015
[12] 韓崇昭、朱洪豔、段戰勝,“多源信息融合”,清華大學出版社,2006
[13] A. Kilpela, “Integrated Electronic and Optoelectronic Circuits and Devices for Pulsed Time-of-Flight Laser Ranger Finding”, University of Oulu, 2003.
[14] B. Ristic, S. Arulampalam, N. Gordon, “Beyond the Kalman Filter”, Artech House, Boston London, 2004.
[15] C. Zhenfei, “Precision analysis for double observation station of IRST systems used for passive ranging,” Science Technology and Engineering, pp. 842-844, 2007.
[16] E. A. Wan, R. V. D. Merwe, “The unscented Kalman filter for nonlinear estimation,” Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 153-158, 2000.
[17] https://en.wikipedia.org/wiki/Infra-red_search_and_track.
[18] L. W. Fong and Z. K. Chen, “Passive Maneuvering Target Tracking via Hybrid Coordinates Federated Filtering Fusion with Information Feedback”, Proceedings of International Automatic Control Conference, Taichung, Taiwan, pp. 27-33, 2016.
[19] L. W. Fong and I. H. Chen, “Passive Angle-only Maneuvering Target Tracking Using Federated Filter in Hybrid Coordinates”, Applied Mechanics and Materials Vol. 432, pp. 427-431, 2013.
[20] L. W. Fong, P. C. Lou, K. J. Tang, "Vehicle Kinematic State Estimation Using Passive Sensor Fusion Approach", Applied Mechanics and Materials, Vols. 271-272, pp. 1709-1712, 2013.
[21] L. W. Fong, “Nonlinear Estimation Fusion Using Recursive Filtering Approach in Distributed Passive Sensor Networks”, Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.43, No. 3, pp. 189-200, 2011.
[22] L. W. Fong, “Nonlinear Estimation Fusion Using Recursive Filtering Approach in Distributed Passive Sensor Networks,” Journal of Aeronautics, Astronautics and Aviation, Series A, Vol. 43, No. 3, pp. 189-200, 2011.
[23] L. W. Fong and Z. K. Chen, “Passive Maneuvering Target Tracking via Hybrid Coordinates Federated Filtering Fusion with Information Feedback,” Proceedings of International Automatic Control Conference, Taichung, Taiwan, pp. 27-33, 2016.
[24] L. W. Fong, “Distributed Data Fusion via Hybrid Approach,” Proceedings of The 33rd Annual Conference of IEEE Industrial Electronics Society (IECON’07), Taipei, Taiwan, pp. 604-609, 2007.
[25] L. Tingjun, H. Youjin, S. Lihong, “Discussion of localizing method of target for IR alarm equipment, ” Modem Electronics Technique, pp. 61-63, 2002.
[26] M. Bedworth and O. Brien J., “The Omnibus Model: a new model of data fusion,” IEEE Transactions on Aerospace and Electronic Systems, pp. 30-36, 2000.
[27] M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging acritical review of usual techniques for distance measurement”, Optical Engineering, pp. 10-19, 2001.
[28] M. D. Visser, P. B. W. Schwering, J. F. D. Groot, and E. A. Hendriks, “Passive ranging using an infrared search and track sensor,” Optical Engineering, 2006.
[29] N. A. Calson “Federated square root filter for decentralized parallel processors,” IEEE Transactions on Aerospace and Electronic System, pp. 517-525, 1990.
[30] P. P, R. S. T, and K. J, “A New Approach to Avoid Walk Error in Pulsed Laser Range Finding”, IEEE Intern Sympos on Circu and Systems Pro, 1999
[31] S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte , “A New Approach 88 for Filtering Nonlinear Systems”, Proceeding of the 1995 American Control Conference, pp. 1628–1632, 1995
[32] V. S. Petrovic and C. S. Xydeas, “Gradient-based multiresolution image fusion,” IEEE Transactions on Image Processing, pp.287-237, 2004
[33] W. Dong, Z. Qingming, Z. Peng, “Analysis on passive ranging measurement of IRST systems ,” Infrared Technology, pp. 440-442, 2010.
[34] W. Jianfei, L. Fanming, “Passive ranging through triplestation IRST system,” Infrared and Laser Engineering, pp. 560-564, 2007.
[35] X. R. Li and V. P. Jilkov, “A Survey of Maneuvering Target Tracking: Dynamic Models, ” SPIE Conference on Signal and Data Processing of Smail Targets, Orlando, 2000.
[36] X. R. Li and V. P. Jilkov, “A Survey of Maneuvering Target Tracking Part V:Multiple Model Methods, ” IEEE Transactions on Aerospace and Electronic System, 2003.
[37] X. R. Li., “Comparison of Two Measurement Fusion Methods for Kalman-Filter-Based Multisensor Data Fusion,” IEEE Transactions on Aerospace and Electronic Systems, 2001.
[38] Y. Bar-Shalom, “Multitarget-Multisensor Tracking: Applications and Advances Volume II,” MA: Artech House, 1992.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top