1.丁昭義、王松永 (1984) 林產學(上冊)。台灣商務印書館。台北。p.453。
2.尤昭云、李文昭 (2006) 多元醇液化柳杉材及其在PU發泡體之應用。林產工業25(2):143-158。3.李文昭 (1998) 溶解相思樹樹皮製造木材膠合劑之研究。林產工業17(4):681-696。4.李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。5.李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-- 杉木木材液化及液化木材膠合劑製備。林業研究季刊24(1):11-20。6.李文昭、劉正字、侯家翔 (2003a) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊25(3):73-86。7.李文昭、張嘉方 (2003b) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。8.李文昭、劉正字、侯家翔 (2004a) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業23(1):43-53。9.李文昭、張嘉方 (2004b) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊37(1):111-119。10.李文昭、張嘉方 (2004c) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業23(3):239-248。11.李文昭、宋憶青、陳奕君、林孟萱 (2005) 竹材液化製造發泡體(1)。林產科技技術轉移暨管理計劃研討會論文 行政院農委會林務局、中華林產事業協會 pp.66-83。
12.林孟萱、李文昭 (2005) 多元醇液化杉木及相思樹木材在PU樹脂膠合劑之應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.631-646。
13.吳秋昌、李文昭 (2006) 多元醇液化木質材料-環氧樹脂聚摻合樹脂之製備及其應用。中華林學會95年度學術論文發表會論文集 中華林學會出版 pp.393-402。
14.周佳儒、李文昭 (2006) 多元醇液化竹材應用於PU膠合劑及低密度板材製造。中華林學會95年度學術論文發表會論文集 中華林學會印行 pp.1107-1116。
15.陳奕君、李文昭、劉正字 (2005) 液化孟宗竹材製備Resol型醇溶性酚樹脂及其應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.727-739。
16.陳奕君、李文昭 、劉正字 (2006) 酚液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業25(3):249-258。17.張上鎮、吳季玲、王升陽、張惠婷 (1997a) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業16(4):825-838。18.張上鎮、張惠婷 (1997b) Si-Carb取樣技術於木材散反射傅立葉轉換紅外線光譜分析之應用。中華林學季刊30(4): 369-376。19.張國峻、李文昭、陳奕君 (2005) 柳杉木材之酚液化處理及其在PF樹脂製備之應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.55-68。
20.蔡信行 編著 (2002) 聚合物化學。新文京開發出版有限公司。台北。pp.59、pp.626-636。
21.康甄玲、李文昭、陳奕君、宋憶青 (2006) 柳杉心材與邊材之酚液化處理效果及其在Resol型酚樹脂製備之應用。中華林學會95年度學術論文發表會論文集 中華林學會出版 pp.1117-1126。
22.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Preparation and characterization of the phenolated wood using hydrochloric(HCl) as a catalyst. Wood Sci. 30:39-47.
23.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Some characterization of hydrochloric acid catalyzed phenolated wood –based materials. Mokuzai Gakkaishi 41(8):741-748.
24.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996a) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak resin. Holzforschung 50(1):85-90.
25.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996b) Phenolation of wood using oxalic acid as a catalyst: effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61: 675-683.
26.Aneja, A., G. L. Wilkes and E. G. Rightor (2002) Study of slabstock flexible polyurethane foams based on varied toluene diisocyanate isomer ratios. J. Polym. Sci. Pol. Phys. 41: 258-268.
27.Bailey, F. E. (1991) Flexible polyurethane foams. In ”Handbook of polymeric foams and technology”, Ed. Klempner, D. and K. C. Frisch, Hanser. New York. pp. 47-49, 62-63.
28.Christenson, E. M., J. M. Anderson, A. Hiltner and E. Baer (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46: 11744-11754.
29.Dounis, D. V. and G. L. Wilkes (1997a) Structure-property relationships of flexible polyurethane foams. Polymer 38(11): 2819-2828.
30.Dounis, D. V. and G. L. Wilkes (1997b) Effect of toluene diisocyanate index on morphology and physical properties of flexible slabstock polyurethane foams. J. Appl. Polym. Sci. 66: 2395-2408.
31.Edwards, P. A., G. Striemer and D. C. Webster (2006) Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Prog. Org. Coat. 57: 128-139.
32.Ge, J. J. and K. Sakai (1993) Compressive properties and biodegradabilities of polyurethane foams derive condensed tannin. Mokuzai Gakkaishi 39(7): 801-806
33.Ge, J. J. and K. Sakai (1996) Synthesis of biodegradable polyurethane foams from the bark Acacia mearnsii. Mokuzai Gakkaishi 42(1): 87-94.
34.Ge, J. J., X. Shi, M. Cai, R. Wu and M. Wang (2003) A novel biodegradable antimicrobial PU foam from wattle tannin. J. Appl. Polym. Sci. 90: 2756-2763.
35.Haseth, J. A., J. E. Andrewa, J. V. McClusky, R. D. Priester, JR., M. A. Harthcock, and B. L. Davis (1993) Characterization of polyurethane foams by mid-infrared fiber/FT-IR spectrometry. Appl. Spectrosc. 47(2): 173-179.
36.Hepburn, C. (1982) Polyurethane elastomers. Applied science publishers. New york. pp.2, 301-302.
37.Kaushiva, B. D. and G. L. Wilkes (2000) Alteration of polyurea hard domain morphology diethanol amine (DEOA) in molded flexible polyurethane foams. Polymer 41: 6981-6986.
38.Kim, H. D., T. J. Lee, J. H. Huh and D. J. Lee (1999) Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 73: 345-352.
39.Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) Analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 50: 407-414.
40.Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622.
41.Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74:151-157.
42.Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane film prepared from the liquefied wood. Biomas Bioenergy 21: 381-390.
43.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structure and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40.
44.Lee, S.H., M. Yoshioka and N. Shiraishi (2000a) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 78: 319-325.
45.Lee, S. H., M. Yoshioka and N. Shiraishi (2000b) Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde cocondensed resin. J. Appl. Polym. Sci. 77:2901-2907.
46.Lee, S. H., M. Yoshioka and N. Shiraishi (2000c) Liquefaction and product identification of corn bran (CB) in phenol. J. Appl. Polym. Sci. 78:311-318.
47.Lee, S. H., Y. Termoto and N. Shiraishi (2002a) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to Novolac-type phenolic resin. J. Appl. Polym. Sci. 83: 1473~1481.
48.Lee, S. H., Y. Termoto and N. Shiraishi (2002b) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 83: 1482~1489.
49.Lee, S. H., Y. Termoto and N. Shiraishi (2002c) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472.
50.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1996) Molecular weight and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64: 351-357.
51.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohyd. Polym. 57: 123-129.
52.Lin, Y., F. Hsieh and H. E. Huff (1997) Water-blown flexible polyurethane foam extender with biomass materials. J. Appl. Polym. Sci. 65:695-703.
53.Moreland, J. C., G. L. Wilkes and R. B. Turner (1994) Viscoelastic behavior of flexible slabstock polyurethane foams: Dependence on temperature and relative humidity. I. Tensilie and compression stress (load) relaxation. J. Appl. Polym. Sci. 52: 549-568.
54.Nakashima, Y., J. J. Ge and K. Sakai (1996) Preparation and characteristics of low-density polyurethane foams derived from the barks of Acacia mearnsii and Cryptomeria japonica. Mokuzai Gakkaishi 42(11): 1105-1112.
55.Rogulska, M., A. Kultys and W. Podkościelny (2006) Studies on thermoplastic polyurethane based on new diphenylethane-derivative diols. I. Synthesis and characterization of segmented polyurethanes from HDI and MDI. Eur. Polym. J. 42: 1786-1797.
56.Rojas, A. J., J. H. Marciano and R. J. Williams(1982) Rigid polyurethane foams: A model of the foaming process. Polym. Eng. Sci. 22(13): 840-844.
57.Seo, W. J., H. C. Jung, J. C. Hyun, W. N. Kim, Y.-B. Lee, K. H. Choe and S.-B. Kim (2003) Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water. J. Appl. Ploym. Sci. 90: 12-21.
58.Shutov, F. A. (1991) Cellular structure and properties of foamed polymers. In ”Handbook of polymeric foams and technology”, Ed. by Klempner, D. and K. C. Frisch, Hanser. New York. pp.22-23.
59.Sonnenschein, M. F., R. Prange and A. K. Schrock (2007) Mechanism for compression set of TDI polyurethane foams. Polymer: 616-623.
60.Wei, Y., F. Cheng, H. Li, and J. Yu (2005) Properties and microstructure of polyurethane resins from liquefied wood. J. Appl. Polym. Sci. 95: 1175-1180.
61.Yamada, T. and H. Ono(2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J. Wood Sci. 47:458-464.
62.Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70: 61-67.
63.Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949.
64.Yilgor, I., E. Yilgor, I. G. Guler, T. C. Ward and G. L. Wilkes (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47: 4105-4114.
65.Zhang, X. D., C. W. Macosko, H. T. Davis, A. D. Nikolov and D. T. Wasan (1999) Role of silicone surfactant in flexible polyurethane foams. J. Colloid Interf. Sci. 215: 270-279.