跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁志泓
研究生(外文):Won iyh-horng
論文名稱:量化迴授設計規格之研究
論文名稱(外文):Research of Specifications in QFT Design
指導教授:鄧清政
指導教授(外文):Ching-Cheng Teng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:103
中文關鍵詞:量化迴授設計規格
外文關鍵詞:QFT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出時域規格轉換至頻域規格,以及頻域規格轉換至時域規格之方法,這種轉換常用於QFT之設計。本論文之研究重點係在於提出三階含雙零點(3,2)系統轉移函數模式,時域規格轉換至頻域規格以行QFT之設計工作。再加上二階系統與三階系統模式,從頻域規格轉換至時域規格設計之研究,從研究中將發現,(3,2)系統模式在行QFT設計時,的確優於(3,1)系統,且(3,1)系統優於(3,0)系統,三階系統優於二階系統。
本論文使用轉換方法,將時域規格轉換為頻域規格,有了頻域規格,QFT設計就步入正軌了,從此進行頻域領域的設計工作,最後將所設計之系統,再求取其時域響應,期能符合時域規格之要求。再者在頻域中設計頻域規格,再轉換至時域規格之時域暫態響應中,再藉由轉換得來的時域規格,在轉換至頻域響應中進行QFT之設計。
在三階含雙零點(3,2)系統模式,如選取一個零點在負實軸很遠處,則其時域與頻域規格轉換結果與三階含單零點(3,1)系統模式相同,再者選取另一個零點在負實軸很遠處,則其時域與頻域規格轉換結果與三階全極點(3,0)系統模式相同,如選取一個極點在負實軸很遠處,則其時域與頻域規格轉換結果與二階全極點(2,0)系統模式相同。由模擬結果顯示,更可加以鑑定所有推導過程與結果無誤。
A procedure is provided for transformation of time specifications in QFT design to frequency specification, The main result of the thesis is on translation of time-domain tolerances into frequency-domain tolerances by third-order model with two zero (3,2) system transfer function, We also transfer frequency-domain tolerances into equivalent time response tolerances that include second-order system and third-order system.
In third-order model with two zero (3,2) system, if we choose the zero far-off on the negative real axis, the result is the same as third-order model with single zero (3,1) system, then we also choose another zero far-off on the negative real axis, the result is the same as third-order model with single zero (3,0) system. If we choose the real pole far-off on the negative real axis, the result is the same as second-order model with all poles (2,0) system.
目錄
中文摘要……………………………………………………………………..Ⅰ
英文摘要……………………………………………………………………..Ⅱ
誌謝…………………………………………………………………………..Ⅲ
目錄…………………………………………………………………………..Ⅳ
符號說明……………………………………………………………………..Ⅵ
圖表說明……………………………………………………………………..Ⅸ
第一章緒論……………………………………………………………….1
1.1量化迴授理論(QFT)…………………………....………………………2
1.2系統規格轉換…………………………………………...……………..5
1.3系統時域與頻域規格………………………………………...………..5
1.4規格轉換步驟概述…….…………………………...………….……..6
第二章時域規格轉換到頻域規格的三階含雙零點(3,2)控制系統…..8
2.1 二階全極點(2,0)系統模式……………………………………….....8
2.2三階含雙零點(3,2)模式…………………………………………......11
2.3區域規格(時域)……………………………………….…………......14
2.4區域規格轉換…………………………………..……………….......14
2.4.1 10%上昇時間規格轉換….........14
2.4.2 90%上昇時間規格轉換…………….15
2.4.3 5%安定時間( ) 規格轉換…………17
2.5計算流程………………………………….…..…..…………......…18
2.6驗證………………………………..…………………….....…………18
2.7 轉換實例與模擬結果………………………………………....………21
第三章 頻域規格轉換至時域響應的二階系統模式……………………….29
3.1 區域頻域規格轉換……………………………………………....……29
3.2 (2,0)系統模式頻域規格……………………………………………...29
3.3 轉換實例與模擬結果……………………….…………………….....32
3.4 含單零點(2,1)系統模式………………………..…………………...41
3.5 限制條件與驗證……………………….…………………….……....42
3.6 轉換實例與模擬結果……………………….…………………….....43
3.7 分析與討論……………………………….……………………….....50
第四章 頻域規格轉換至時域響應的三階系統模式……………………….51
4.1 區域頻域規格轉換……….…………………………..……………...53
4.2 (3,0)系統模式頻域規格………………….……..……………………53
4.3 決定限制條件與證明………………….…………..……..………...55
4.4 轉換實例與模擬結果………………….…………..………..……...56
4.5 (3,1)系統模式頻域規格………………….…………….………….…64
4.6 驗證一………………….………………………………………….....66
4.7 轉換實例與模擬結果………………….…………..…..……….....68
4.8 (3,2)系統模式頻域規格………………….…………………………..78
4.9 驗證二………………….……………………….…………………....81
4.10 轉換實例與模擬結果………………….………………..………....85
4.11 三階系統模式下之分析…………………..………………………...94
第五章結論與未來研究方向………………….……………….………99
參考文獻………………………………….…………………………………101
參考文獻
[1] .Butterworth.W. S On The Theory of Filter Amplifiers
(book) , Engineer ,London,England,vol. 7,pp.536-541. 1930
[2]. Burden, R. L., Faires J. D. and Reynolds, A. C. H. "
Numerical Analysis "ThompsonInt., 1983.
[3]. Constantinides, A. " Applied Numerical Methods with Personal Computers ", Mc Graw-Hill Inc., 1987.
[4]. D''azzo J. J. and Houpis, C. H. " Feedback Control System Analysis and Synthesis " , McGraw-Hill,lnc,1968.
[5]. D''azzo J. J. and Houpis, C. H. " Linear Control System Analysis and Desig-n ", McGraw-Hill, Inc, 1975.
[6]. Dorf, R. C., " Mordern Control Systems ", 3rd Edition, Addison Wesley,1980.
[7].Dunstan ,G and Lathrop. R. C "The Synthesis of Optimum "Transient Responses:Criteria and Standard Forms.”P273~p288.1953.
[8].Franklin, G. F., Powel J. D. and Emami ,N,A. " Feedback Control of Dynamic Systems ", 2nd Edition, Addison Wesley, April
1991.
[9]. Hall. A.C The Analysis And Synthrsis of Linear Servomechanisms(book), The Technology Press,Massachusetts Institute of Technology Cambridge,Mass,1943.
[10]. Horowitz, 1. M., " Synthesis of Feedback Systems ", Academic Press, New York,1963.
[11]. Horowitz, 1. M., Optimum Loop Transfer Function in Single Loop Minimum Phase Feedback Systems , Int. J. Control, Vol. 18, No. I, pp.97-113, 1973.
[12]. Horowitz, I. M., Quantitative Synthesis Of Uncertain Multiple Input Output Feedback System , Int. J. Control, Vol. 30, No. 1. pp. 81-106, 1979.
[13]. Horowitz, 1. M., Improvement in Quantitative Nonlinear Feedback Design by Cancellation , Int. J. Control, Vol. 34,No. 3, pp. 547-560,1981.
[14]. Horowitz, 1. M " Quantitative Feedback Design Theory (OFT) ", QFT Publications, Vol. 1,1992.
[15]. Horowitz, I. M. and Moshe Breiner, Quantitative Systhesis of Feedback System with Uncertain Nonlinear Multivariable Plants ", Int. J. of Systems Science, Vol. 12, pp. 539-563,1981.
[16]. Horowitz, 1. M. and C. Loecher, Design of a 3 x 3 Multivariable Feed-
back System with Large Plant Uncertainty , Int. J. Control, Vol. 33, No. 4, pp. 677-699, 1981
[17]. Horowitz, I''. M. and Shaked, U. Superiority of Transfer Function overState Variable Methods in Linear Time Invariant Feedback System De-sign , IEEE Transactions on Automatic Control, Vol. 20, No. I, pp. 84-97, February 1975.
[18].Horowitz, I. M. and Shur, D. Control of a Highly Uncertain Van DerPol Plants , Int. J. Control, Vol. 34, pp. 199-219, 1980.
[19]. Horowitz, I. M. and Sidi, M. Synthesis of Feedback Systems with Large Plant Ignorance for Prescribed Time Domain Tolerances , Int. J. Control, Vol. 16, No. 2, pp. 287-309,1972.
[20]. Horowitz, 1. M, and Sidi M., Synthesis of Cascaded Multiple Loop Feedback System with Large Plant Parameter Ignorance , Automatic, Vol. 9, pp. 589-600,1973.
[21]. Horowitz, 1. M. and Sidi, M. Optimum Synthesis of Nonminimum Phase Feedback Systems with Plant Uncertainty , Int. J. Control, Vol. 27 , No. 3, pp. 361-386, 1978.
[22].Horowitz, 1. M. and Wang, B. C. Quantitative Synthesis of Uncertain Cascade Feedback System with Plant Modification , Int. J. Control, Vol. 30, No. 5, pp. 837-862,1979.
[23]. Horowitz, 1. M. and Wang, T. S. A Synthesis for Class of Multiple Loop Feedback Systems with Plant Uncertainty , Int. J. Control, Vol.29, No. 4, pp. 645-668, March 1979.
[24]. James H..M. and Nichols,R. S.”Theory of SERVOMECHANISMS”(book), McGraw-Hill Book Company ,Inc,New York,N.Y,1947.
[25]. Kou, B. C " Automatic Control Systems ", 6th Edition, Prentice-Hall Int., 1991.
[26]. Krishman, K. R. and Cruickshanks, A. Frequency Domain Design of Feedback Systems or Specified Insensitivity of Time Domain Re-sponse to Parameter Variation, Int. J. Control, Vol. 25, No. 4, pp.609-620,1977.
[27]. Liao, Y. K., " Quantitative Synthesis of Feedback Systems with Plants Under Various Constraints ", Ph. D. Thesis, Weizmann Institute of Science, Rehovot, lserael, December 1985.
[28]. McDonald, A. C. and Lowe, H. " Feedback and Control Systems ", Prent-ice-Hall Int.,1981.
[29]. Nagrath, 1. J. and Gopal, M. " Control Systems Engineering ", 2nd Edition, 1981.
[30]. Ogata, K. " Modern Control Engineering ", 2nd Edition , Prentice-Hall Int.1990.
[31].Oldenbourg R.C Sartorius H.”The Dynamics of Automatic Controls”(book). The American Society of Mechanical Engineers, New York, N.Y,1948.
[32]. Phillips, C. L. and Royce D. H " Feedback Control Systems ", Prentice-Hall Int., 1988.
[33]. Shinners, S. M. " Modern Control System Theory and Application ", 2nd Edition, Addison-Wesley, 1978.
[34]. Tebbutt, C. D. An Expert System for'' Multivariable Controller Design ,Automatica,Vol. 28, No. 3, pp. 463-471, 1992.
[35].Thompson, D. F. and O. Nokah, D. 1. Frequency Response Specifications and Sensitivity Functions in Quantitative Feedback Theory , A.C.C. Boston, pp. 599-604,1991.
[36]. Thompson, D. F. and O. Nokah, D. 1. Optimal Loop Synthesis in Quantitative Feedback Theory , AC.C. Boston, pp. 628-638, 1991.
[37]. Trimmer ,J.D.. John ,W “Response of Physical Systems” (book), Inc., New York, N. Y.,1950.
[38]梁溫馨。量化迴授控制設計時域規格轉換”(Transformation of Specification in QFT Design),國立交通大學碩士論文,1993.
[39]林保童。量化迴授規格之高階系統轉換”(High Order System Specification Transformation for QFT),國立交通大學碩士論文,1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top