參考文獻
一、中文部分
呂奇傑,李天行,高人龍,陳學群(2008),結合獨立成份分析與類神經網路於時間序列預測模式之建構,Chiao Da Management Review,28(2),187-216。
連立川,葉怡成(2008),以遺傳神經網路建構台灣股市買賣決策系統之研究,資訊管理學報,15(1),29-51。陳安斌,許育嘉(2004),整合小波轉換與類神經網路於金融投資決策時間序列之研究,資訊管理學報,11(1),139-165。黃宇翔,王百祿(2008),ARIMA與適應性SVM之混合模型於股價指數預測之應用,Journal of e-Business,10(4),1041-1066。
二、英文部分
Allen, F., & Karlajainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics 51(2), 245-271.
Balachandher, K. G., Fauzias, M. N., & Lai, M. M. (2002). An ex-amination of the random walk model and technique trading rules in the Malaysian to stock market. Quarterly Journal of Business & Economics, 41(3), 81-104.
Bart, L., & Dirk, V. D. P. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Application, 29(1), 472-484.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Brok, W. A., & Kleidon, A. W. (1992). Periodic market closure and trading volume: A model of intraday bids and asks. Journal of Economic Dynamics and Control, 16(3-4), 451-489.
Buckinx, W., & Dirk, V. D. P. (2005). Customer base analysis: Partial defection of behaviourally-loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268.
Cao, L., & Gu, Q. (2002). Dynamic support vector machines for non-stationary time series forecasting. Intelligent Data Anal-ysis, 6(1), 67-83.
Chang, C. C., & Lin, C. J. (2001). LIBSVM:A library for support vector machines [Online]. Available: http://www.csie.ntu.ed u.tw/~cjlin/libsvm/ [2008, May 8]
Fama, E. F. (1970). Efficient capital market: A review of theory and emprical. Journal of Finance, 25(2), 383-417.
Harb. R., Xuedong, Y., Essam, R., & Xiaogang, S. (2009). Exploring precrash maneuvers using classification trees and random forests. Accident Analysis and Prevention, 41(1), 98-107.
Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computer and Operations Research, 32(10), 2513-2522
Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319.
Kiviluoto, K., & Oja, E. (1998, October 21-23). Independent component analysis for parallel financial time series. Paper presented at proceedings of the Fifth International Conference on Neural Information, Kitakyushu, Japan.
Leigh, W., Hightower, R., & Modani, N. (2005). Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike. Expert systems with Applications, 28(1), 1-8
Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R News, 2(3) , 18-22.
Lu, C. J., Lee, T. S., & Chiu, C. C., (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115-125.
Oja, E., Kiviluoto, K., & Malaroiu, S. (2000) Independent component analysis for financial time series, in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing. Communications and Control Symposium, 111-116.
Pardo, M., & Sberveglieri, M. (2008). Random forests and nearest shrunken centroids for the classification of sensor array data. Sensors and Actuators B: Chemical, 131(1), 93-99.
Sánchez, V. D. A. (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55(1), 5-20.
Tay, F. E. H., & Cao, L. J. (2001). Application of support vector machines in financial time series forecasting. Omega, 29(4), 309-317.
Tay, F. E. H., & Cao, L. J. (2002). Modified support vector ma-chines in financial time series forecasting. Neurocomputing, 48(5), 847-861.
Visser, E., & Lee, T. W. (2003), Speech enhancement using blind source separation and two-channel energy based speaker detection, Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal, 884-887.
Yaser, S., & Atiya, A. F. (1996). Introduction to financial forecasting. Applied Intelligence, 6(3), 2-7.
Xie, Y., Li, X., Nagi, E. W .T., & Ying, W. (2009). Customer churn prediction using improved balanced random forests. Expert Systems with applications, 36(3), 5445-5449.
Yim, J. (2002). A comparison of neural networks with time series models for forecasting returns on a stock market index. Lecture Notes in Computer Science, 58(6), 25-35.
Zheng, L., Watson, D. G., Johnston, B. F., Clark, R. L., Edrada, E. R., & Elseheri, W. (2008). A chemo metric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines, and random forest data modeling. Analytica Chimica Acta, 642(1-2) , 257
- 265.