跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林豐池
研究生(外文):Feng-Chih Lin
論文名稱:雙重超音波影像之主動輪廓分割與影像追蹤進行肝臟三維輪廓重建
論文名稱(外文):3D Liver Contour Reconstruction from Dual Ultrasound Slices Using Active Contour Model Segmentation and Image-Guided Tracking
指導教授:連豊力
指導教授(外文):Feng-Li Lian
口試委員:陳永耀顏家鈺何明志
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:147
中文關鍵詞:超音波影像追蹤影像分割三維輪廓重建影像對位
外文關鍵詞:ultrasoundimage trackingimage segmentation3D contour reconstructionimage registration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這邊論文中提出一種以影像導引系統來追蹤肝臟,傳統的醫學影像導引系統包含斷層掃描、核磁共振和超音波,基於影像頻率與非入侵性的考量,以超音波影像導引系統來追蹤肝臟,其主要目的是以超音波影像來持續地追蹤肝臟運動並且治療肝腫瘤。傳統上的樣板比對既無法描述非鋼體運動又需要龐大的計算量,為了改善準確度與計算速度,額外測試了兩種追蹤方法包含光流法與類神經網路,並以兩組不同的場景進行實驗測試。在第一組場景中,目標物採取正常呼吸,在第二組場景中,目標物則採取變化式地呼吸,急促與緩慢的變化、屏住呼吸或氣喘般的呼氣。在第一組場景中,三種追蹤方法都能成功地追蹤到目標物,然而在第二組實驗中,三種方法都偶爾地會跟丟目標物。
現有上主要三維輪廓重建的方法,都是採取移動探頭來掃描靜態的器官,然而這個想法並不適用在重建動態器官,本篇裡提出了一種廉價且靈活的超音波影像系統,它結合輪廓對位與輪廓分割,從有限個數的二維輪廓來重建三維輪廓。它的概念是固定探頭,藉由呼吸下肝臟運動來採集不同部位的二維影像。為了達到可靠的重建結果,本篇裡發展了新的影像分割與輪廓對位的方法,一種結合紋理差異影像與主動輪廓模型能提供可靠的影像分割結果,接著,再利用已分割的輪廓,提出了一種雙重超音波對位的方法,這想法是利用多出來的探頭來追蹤被採集影像的位置,利用迭代最近的點來追蹤輪廓位置,並將它們對位,這套對位系統是可以從稀疏的二維輪廓來達成精確的三維輪廓。


An image-guided system for a liver tracking is presented in this thesis. Traditional medical image-guided systems include computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound image (US). While considering frame rate and invasiveness, the ultrasound image-guided system is proposed for tracking the liver motion. The main objective is to use ultrasound image for continuously tracking liver motion and for tumor treatment. Traditional template matching cannot describe the non-rigid body motion, and consume a large amount of computational time. To improve the accuracy and computation speed, two tracking methods are tested, including optical flow and neural network. Two different scenarios are experimentally tested. In the first scenario, the “subject” breathes normally. In the second scenario, the “subject” varies between taking deep and slow breathes, holding his breath, or panting rapidly. For the first scenario, all three methods could track the target motion successfully, while, for the second scenario, all methods might lose the target occasionally.
The primary methods of existing 3D contour reconstruction scan a static organ with moving probe. However, this idea is not suitable for dynamic organ. A low-cost and flexible ultrasound imaging system which combines contour registration with image segmentation for 3D reconstructions from limited numbers of 2D contours is presented. The proposed approach is based on a fixed ultrasound probe system that collect each partial 2D imaging through the liver motion due to respiration. For reliable reconstruction performance, a new method for image segmentation and contour registration is developed. A new hybrid approach that provides reliable segmentation performance with texture distance image and active contour model is presented. Second, using the segmented contour, a new dual contours registration method is introduced. The approach uses additional probe to track the position of acquisition of images during scanning. Then, the contour registration is performed using contour for iterative closest point (ICP) matching. This registration system allows for accurate 3D reconstructions from sparse 2D image slices.


摘要 i
ABSTRACT iii
Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Description 3
1.2.1 Speckle Tracking in Ultrasound Image 3
1.2.2 3D Contour Reconstruction 5
1.3 Contribution 7
1.4 Organization of the Thesis 9
Chapter 2 Literature Survey 11
2.1 Ultrasound Image Tracking 11
2.2 Ultrasound Image Segmentation 13
2.3 3D Ultrasound Reconstruction 18
Chapter 3 Related Algorithms 23
3.1 Iterative Closest Point (ICP) Algorithm 23
3.2 Texture features extracted from GLCM 25
3.2.1 Creating a Gray-Level Co-Occurrence Matrix (GLCM) 25
3.2.2 Statistical methods for GLCM 29
Chapter 4 Ultrasound Image-Guided for Liver Motion Tracking 33
4.1 Optical Flow 33
4.1.1 Multiple Motion Vector of Mesh 35
4.1.2 Adaptive Feature Weighted Filtering 38
4.2 Neural Network 43
Chapter 5 Active Contour Model Segmentation on Texture Image 45
5.1 Texture Distance Image 46
5.1.1 Reference Region 48
5.1.2 Texture Distance 50
5.2 Active Contour Model Segmentation 51
5.2.1 External Force 52
5.2.2 Internal Force 56
Chapter 6 Reconstruction of 3D liver Contour in Dual Ultrasound Slices 59
6.1 Dual Probes System Architecture 61
6.2 Automatically Overlapping Line Identification 63
6.3 2D to 3D Contour Registration 68
6.4 ICP for Contour Tracking 71
6.5 3D Model Simulation 78
6.6 3D Contour Correction 87
6.6.1 Y-axis Correction 88
6.6.2 X-axis Correction 90
6.6.3 Multi-cycle Correction 94
Chapter 7 Experimental Results and Analysis 97
7.1 Experimental Results of Ultrasound Image for Liver Motion Tracking 97
7.1.1 Template Matching 98
7.1.2 Optical Flow 99
7.1.3 Neural Network 101
7.2 Experimental Results of Active Contour Model Segmentation on Texture Image 103
7.3 Experimental Results of Reconstruction of 3D liver Contour 127
Chapter 8 Conclusion and Future Work 139
8.1 Conclusion 139
8.2 Future Work 140
References 141


[1: Langen & Jones 2001]
K. M. Langen and D. T. L. Jones, “Organ Motion and its Management,” International Journal of Radiation Oncology Biology Physics, Vol. 50, No. 1, pp. 265-278, May 2001.
[2: Abd-Elmoniem et al. 2002]
K. Z. Abd-Elmoniem, A.-B. M. Youssef, and Y. M. Kadah, “Real-Time Speckle Reduction and Coherence Enhancement in Ultrasound Imaging via Nonlinear Anisotropic Diffusion,” IEEE Transactions on Biomedical Engineering, Vol. 49, No. 9, pp. 265-278, Sep. 2002.
[3: Hossack et al. 2001]
J. A. Hossack, J. S. Ha, and T. S. Sumanaweera, “Quantitative, Free-Hand 3D Ultrasound Imaging based on a Modified 1D Transducer Array,” Medical Imaging 2001: Ultrasonic Imaging and Signal Processing, San Diego, CA, USA, Vol. 4325, pp. 102-112, Feb. 21, 2001.
[4: Yeung et al. 1998]
F. Yeung, S. F. Levinson, D. Fu, and K.J. Parker, “Feature-Adaptive Motion Tracking of Ultrasound Image Sequences Using A Deformable Mesh,” IEEE Transactions on Medical Imaging, Vol. 17, No. 6, pp. 945-956, Dec. 1998.
[5: Noble & Boukerroui 2006]
J. A. Noble and D. Boukerroui, “Ultrasound Image Segmentation: A Survey,” IEEE Transactions on Medical Imaging, Vol. 25, No. 8, pp. 987-1010, Aug. 2006.
[6: Bohs & Trahey 1991]
L. N. Bohs and G. E. Trahey, “A Novel Method for Angle Independent Ultrasonic Imaging of Blood Flow and Tissue Motion,” IEEF Transactions on Biomedical Enginfering, Vol. 38, No. 3, pp. 280-286, Mar. 1991.
[7: Kaluzynski et al. 2001]
K. Kaluzynski, X. Chen, S. Y. Emelianov, A. R. Skovoroda, and M. O’Donnell, “Strain Rate Imaging using Two-Dimensional Speckle Tracking,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 4, pp. 1111-1123, Jul. 2001.
[8: Notomi et al. 2005]
Y. Notomi, P. Lysyansky, R. M. Setser, T. Shiota, Z. B. Popovic, M.G.Martin-Miklovic, J.A.Weaver, S. J. Oryszak, N. L. Greenberg, R. D. White, and J. D. Thomas, “Measurement of Ventricular Torsion by Two-Dimensional Ultrasound Speckle Tracking Imaging,” Journal of the American College of Cardiology, Vol. 45, No. 12, pp. 2034-2041, Jun. 2005.
[9: Levinson et al. 1994]
S. F. Levinson, F. Yeung, W. Walker, and G. E. Trahey, “A Sonoelasticity Imaging Display for 2D Speckle Tracking,” Ultrasonic Imaging, No. 16, pp. 38, 1994.
[10: Yeung et al. 1998]
F. Yeung, S. F. Levinson, and K. J. Parker, “Multi-Level and Motion Model-Based Ultrasonic Speckle Tracking Algorithms,” Ultrasound in Medicine & Biology, Vol. 24, No. 3, pp. 427-441, Mar. 1998.
[11: Mailloux et al. 1989]
G. E. Mailloux, F. Langlois, P. Y. Simard, and M. Bertrand, “Restoration of the Velocity Field of the Heart from Two Dimensional Echocardiograms,” IEEE Transactions on Medical Imaging, Vol. 8, No. 2, pp. 143-153, Apr. 1989.
[12: Shizawa & Mase 1990]
M. Shizawa, and K. Mase, “Simultaneous Multiple Optical Flow Estimation,” IEEE Conference Computer Vision and Pattern Recognition, New Jersey, USA, Vol. 1, pp. 274-278, Jun. 16-21, 1990.
[13: Herz et al. 2005]
S. Herz, C. M. Ingrassia, S. Homma, K. D. Costa, and J. W. Holmes, “Parameterization of Left Ventricular Wall Motion for Detection of Regional Ischemia,” Annals of Biomedical Engineering, Vol. 33, No. 7, pp. 912-919, Jul. 2005.
[14: Cavusoglu et al. 2006]
Y. Cavusoglu, N. Ata, B. Timuralp, A. Birdane, B. Gorenek, and A. Unalir, “Visualization of the Site of the Onset of Ventricular Depolarization by Acceleration Mode Tissue Doppler Imaging Technique,” The International Journal of Cardiovascular Imaging, Vol. 22, No. 2, pp. 171-176, Apr. 2006.
[15: Ma et al. 2010]
Z. Ma, J. M. R. S. Tavares, R. N. Jorge, and T. Mascarenhas, “A review of Algorithms for Medical Image Segmentation and their Applications to the Female Pelvic Cavity,” Computer Methods in Biomechanics and Biomedical Engineering, Vol. 13, No. 2, pp. 235-246, Apr. 2010.
[16: Canny 1986]
J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679-698, Nov. 1986.
[17: Prewitt 1970]
J. M. S. Prewitt, “Object Enhancement and Extraction,” Picture Processing and Psychopictorics, pp. 75-149, Nov. 1970.
[18: Davis 1975]
Larry S. Davis, “A Survey of Edge Detection Techniques,” Computer Graphics and Image Processing, Vol. 4, No. 3, pp. 248-270, Sep. 1975.
[19: Adams 1994]
R. Adams and L. Bischof, “Seeded Region Growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp. 641-647, Sep. 1994.
[20: Jain 1995]
R. Jain, R. Kasturi, and B. G. Schunck, “Machine Vision,” First Edition, New York: McGraw-Hill, 1995.
[21: Beucher 1979]
S. Beucher, C. Lantuejoul, “Seeded Region Growing,” In International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, pp. 17-21, Sep. 1979.
[22: Vrooman 2007]
H. A. Vrooman, C. A. Cocosco, F. van der Lijn, R. Stokking, M. A. Ikram, M. W. Vernooij, M. M.B. Breteler, and W. J. Niessen, “Multi-Spectral Brain Tissue Segmentation using Automatically Trained k-Nearest-Neighbor Classification,” NeuroImage, Vol. 37, No. 1, pp. 71-81, Aug. 2007.
[23: Sarti 2005]
A. Sarti, C.Corsi, E.Mazzini, and C. Lamberti, “Maximum Likelihood Segmentation of Ultrasound Images with Rayleigh Distribution,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 6, pp. 947-960, Jun. 2005.
[24: Jacobs 2000]
M. A. Jacobs, R. A. Knight, H. Soltanian-Zadeh, Z. G. Zheng, A.V. Goussev, D. J. Peck, J. P. Windham and M. Chopp, “Unsupervised Segmentation of Multiparameter MRI in Experimental Cerebral Ischemia with Comparison to T2, Diffusion, and ADC MRI Parameters and Histopathological Validation,” Journal of Magnetic Resonance Imaging, Vol. 11, No. 4, pp. 425-437, Apr. 2000.
[25: Kass 1988]
M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1988.
[26: Leymarie & Levine 1993]
F. Leymarie and M. D. Levine, “Tracking Deformable Objects in the Plane using an Active Contour Model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 6, pp. 617-634, Jun. 1993.
[27: Osher & Sethian 1988]
S. Osher and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, Vol. 79, No. 1, pp. 12-49, Nov. 1988.
[28: Malladi & Sethian 1996]
R. Malladi and J.A. Sethian, “Level Set and Fast Marching Methods in Image Processing and Computer Vision,” IEEE International Conference on Image Processing, Lausanne, Switzerland, Vol. 1, pp. 489-492, Sep 16-19, 1996.
[29: Caselles et al. 1997]
V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” International Journal of Computer Vision, Vol. 22, No. 1, pp. 61-79, Feb. 1997.
[30: Fenster et al. 2001]
A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-Dimensional Ultrasound Imaging,” Physics in Medicine and Biology, Vol. 46, No. 5, pp. 67-99, May. 2001.
[31: Picot et al. 1993]
P. A. Picot, D. W. Rickey, R. Mitchell, R. N. Rankin, A. Fenster, “Three-Dimensional Colour Doppler Imaging,” Ultrasound in Medicine & Biology, Vol. 19, No. 2, pp. 95-104, 1993.
[32: Downey & Fenster 1995]
D. B. Downey and A. Fenster, “Vascular Imaging with a Three-Dimensional Power Doppler System,” American Journal of Roentgenology, Vol. 165, No. 3, pp. 665-668, Sep. 1995.
[33: Smith & Fenster 2000]
W. L. Smith and A. Fenster, “Optimum Scan Spacing for Three-Dimensional Ultrasound by Speckle Statistics,” Ultrasound in Medicine & Biology, Vol. 26, No. 4, pp. 551-562, May. 2000.
[34: Detmer et al. 1994]
P. R. Detmer, G. Bashein, T. Hodges, K. W. Beach, E. P. Filer, D. H. Burns, and D. E. Strandness Jr., “3D Ultrasonic Image Feature Localization Based on Magnetic Scanhead Tracking: in Vitro Calibration and Validation,” Ultrasound in Medicine & Biology, Vol. 20, No. 9, pp. 923-936, 1994.
[35: Yu et al. 2011]
H. Yu, M. S. Pattichis, C. Agurto, and M. B. Goens, “A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes,” BioMedical Engineering OnLine, Vol. 10, No. 7, Jan. 2011.
[36: Leotta et al. 1997]
D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a Miniature Magnetic Position Sensor for Three Dimensional Ultrasound Imaging,” Ultrasound in Medicine & Biology, Vol. 23, No. 4, pp. 597-609, 1997.
[37: Legget et al. 1998]
M. E. Legget, D. F. Leotta, E. L. Bolson, J. A. Mcdonald, R. W. Martin, X.-N. Li, C. M. Otto, and F. H. Sheehan, “System for Quantitative Three-Dimensional Echocardiography of the Left Ventricle based on a Magnetic-Field position and Orientation Sensing System,” IEEE Transactions on Biomedical Engineering, Vol. 45, No. 4, pp. 494-504, Apr. 1998.
[38: King et al. 1990]
D. L. King, D. L. King Jr., and M. Y. Shao, “Three-Dimensional Spatial Registration and Interactive Display of Position and Orientation of Real-Time Ultrasound Images,” Journal of Ultrasound in Medicine, Vol. 9, No. 9, pp. 525-532, Sep. 1990.
[39: Rivera et al. 1994]
J.M. Rivera, S. C. Siu, M. D. Handschumacher, J.-P. Lethor, J.L. Guerrero, G. J. Vlahakes, J. D. Mitchell, A. E. Weyman, M. E. E. King, and R. A. Levine, “Three-Dimensional Reconstruction of Ventricular Septal Defects : Validation Studies and in Vivo Feasibility,” Journal of the American College of Cardiology, Vol. 23, No. 1, pp. 201-208, Jan. 1994.
[40: Gobbi et al. 1999]
D. G. Gobbi, R. M. Comeau and T. M. Peters, “Ultrasound Probe Tracking for Real-Time Ultrasound/MRI Overlay and Visualization of Brain Shift,” MICCAI ''99 Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, UK, pp. 920-927, Sep. 19-22, 1999.
[41: Chen et al. 1997]
J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of Scan-Plane Motion Using Speckle Decorrelation: Theoretical Considerations and Initial Test,” International journal of imaging systems and technology, Vol. 8, No. 1, pp. 38-44, 1997.
[42: Tuthill et al. 1998]
T. A. Tuthill, J. F. Krücker, J. B. Fowlkes and P. L. Carson, “Automated Three-Dimensional US Frame Positioning Computed from Elevational Speckle Decorrelation,” Radiology, Vol. 209, No. 2, pp. 575-582, Nov. 1998.
[43: Lee et al. 2001]
J. H. Lee, S. H. Kim, and N. C. Kim, “Reconstruction of 3D ultrasound Image from Freehand Scanned Frames Using Frame-by-Frame Isotropic Correlation Function,” Proceedings of Three-Dimensional Image Capture and Applications IV, San Jose, CA, USA, Vol. 4298, pp. 195-202, Apr. 13, 2001.
[44: Prager et al. 2003]
R. W. Prager, A. H. Gee, G. M. Treece, C. J. C. Cash, and L. H. Berman, “Sensorless Freehand 3-D Ultrasound using Regression of the Echo Intensity,” Ultrasound in Medicine & Biology, Vol. 29, No. 3, pp. 437-446, Mar. 2003.
[45: von Ramm & Smith 1990]
O. T. von Ramm and S. W. Smith, “Real Time Volumetric Ultrasound Imaging System,” Journal of Digital Imaging, Vol. 3, No. 4, pp. 261-266, Nov. 1990.
[46: Besl & McKay 1992]
P.J. Besl and N.D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, Feb. 1992.
[47: Haralick et al. 1973]
R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 6, pp. 610-621, Nov. 1973.
[48: Barber & Ledrew 1991]
D. G. Barber and E. F. Ledrew, “SAR Sea Ice Discrimination using Texture Statistics : A Multivariate Approach,” Photogrammetric Engineering and Remote Sensing, Vol. 57, No. 4, pp. 385-395, Apr. 1991.
[49: Lin et al. 2007]
C.-H. Lin, M. C.-J. Lin, and Y.-N. Sun, “Ultrasound Motion Estimation using a Hierarchical Feature Weighting Algorithm,” Computerized Medical Imaging and Graphics, Vol. 31, No. 3, pp. 178-190, Apr. 2007.
[50: Somkantha et al. 2007]
K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul, “Boundary Detection in Medical Images Using Edge Following Algorithm Based on Intensity Gradient and Texture Gradient Features,” IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, pp. 567-573, Mar. 2011.
[51: Ruisz et al. 2003]
J. Ruisz, D. Honigmann, and H. Pottmann, “Segmentation and Modeling of Approximately Rotationally Symmetric Objects in 3D ultrasound,” Fourth International Conference on 3D Digital Imaging and Modeling, Banff, Alberta, Canada, pp. 124-131, Oct. 6-10, 2003.
[52: Yun & Shu 2011]
T.Yun and H. Shu, “Ultrasound Image Segmentation by Spectral Clustering Algorithm based on the Curvelet and GLCM features,” 2011 International Conference on Electrical and Control Engineering, Yichang, China, pp. 920-923, Sep. 16-18, 2011.
[53: Shimizu et al. 1999]
S. Shimizu, H. Shirato, B. Xo, K. Kagei, T. Nishioka, S. Hashimoto, K. Tsuchiya, H. Aoyama, and K. Miyasaka, “Three-Dimensional Movement of a Liver Tumor Detected by High-Speed Magnetic Resonance Imaging,” Radiotherapy and Oncology, Vol. 50, No. 3, pp. 367-370, Mar. 1999.
[54: Kirilova et al. 2008]
A. Kirilova, G. Lockwood, P. Choi, N. Bana, M. A. Haider, K. K. Brock, C. Eccles, and L. A. Dawson, “Three-Dimensional Motion of Liver Tumors using Cine-Magnetic Resonance Imaging,” International Journal of Radiation Oncology Biology Physics, Vol. 71, No. 4, pp. 1189-1195, Jul. 2008.
[55: Gastounioti et al. 2010]
A. Gastounioti, S. Golemati, J. Stoitsis, and K.S. Nikita, “Kalman-Filter-Based Block Matching for Arterial Wall Motion Estimation from B-Mode Ultrasound,” 2010 IEEE International Conference on Imaging Systems and Techniques, Thessaloniki, Greece, pp. 234-239, Jul. 1-2, 2010.
[56: Zagrodsky et al. 2005]
V. Zagrodsky, V. Walimbe, C. R. Castro-Pareja, J. X. Qin, J.-M. Song and R. Shekhar, “Registration-Assisted Segmentation of Real-Time 3-D Echocardiographic Data Using Deformable Models,” IEEE Transactions on Medical Imaging, Vol. 24, No. 9, pp. 1089-1099, Sep. 2005.

Website
[57: Iterative Closest Point Algorithm 2001]
Available:
http://www.mathworks.com/matlabcentral/fileexchangee/12627


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊