跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明裕
研究生(外文):Ming-Yu Wu
論文名稱:高壓微細預混合磨漿水刀切割硬脆薄板之切削分析
論文名稱(外文):Cutting Analysis of Thin Brittle Plate by High-Pressure Mini-Slurry Suspension Jet
指導教授:賀陳弘賀陳弘引用關係
指導教授(外文):Hong Hocheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:146
中文關鍵詞:加砂水刀預混合加砂水刀磨漿硬脆材料硬脆薄板晶圓
外文關鍵詞:Abrasive Water JetsAbrasive Suspensio JetsSlurryBrittle MaterialThin Brittle PlateSilicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以預混合磨漿水刀對玻璃與晶圓試片進行切削實驗。首先建立預混合磨漿水刀系統,利用高壓缸體與活塞的設計,建立預混合磨漿水刀系統。高壓水由上方注入推動活塞向下,並且擠壓磨漿經由噴嘴射出。水刀設備主要使用壓力在105MPa,噴嘴口徑為0.1 mm。
在切削實驗中,主要針對其切削參數(磨粒號數、磨粒體積濃度、進給速度及壓力)對切口性質(上切口寬度、下切口寬度、影響區域寬度、粗糙度、體積移除率)與最大進給速度的影響做一探討。並且利用SEM與光學顯微鏡觀察實驗切屑與切口受磨粒撞擊後表面性狀與下切口平整度。
經由實驗發現在高濃度時所得到的效率較差,最大進給速度的切削條件為:5%體積濃度、105MPa壓力,1500號碳化矽磨粒。而在壓力105MPa、1500號磨粒情況時,有最小的粗糙度約1~4μm。而利用SEM與光學顯微鏡可以觀察到切口表面波紋、受磨粒撞擊坑洞、塑性流動與快速進給時下切口的破裂情形。

The current study analyzes the properties of glass and silicon kerf under Abrasive Suspension Jet (ASJ) cutting. The system consists of a high-pressure cylinder and piston. The highly pressurized water from the pump pushes the isolator downward while the premixed slurry is pumped through the orifice. The system is operated under 105 MPa with a 0.1-mm diameter orifice.
The relations between the abrasive volume concentration, pressure, traverse speed, abrasive size, the kerf width at upper, bottom and affected zones, kerf ratio, kerf taper, roughness, and the maximum traverse speed were studied. Scanning Electron Microscope (SEM) and optical microscope were used to observe the surface waviness of kerf, plastic flow and trace of abrasives under impact.
The experiment results show that the maximum traverse speed occurs at the pressure of 105 MPa, 5% volume concentration, and 1500 mesh SiC abrasive, while the minimum roughness occurs at the pressure of 70 MPa and 2000 mesh SiC abrasive.

第一章 緒 論
1.1 研究背景
1.2 硬脆材料的切割
1.3 文獻回顧
1.3.1 加砂水刀文獻
1.3.2 預混加砂水刀文獻
1.4 研究目的
第二章 切削理論分析
2.1 切削機制
2.2 彈性/塑性理論
2.3 切削磨耗理論
2.4 變形磨耗理論
第三章 實驗設備與實驗規劃
3.1 實驗設備
3.1.1 高壓水刀設備
3.1.2 高壓缸體及組件設計
3.2實驗試片與規劃
3.2.1 實驗試片及耗材
3.2.2 實驗規劃
3.2.3 實驗量測
3.2.4 實驗步驟
第四章 實驗結果與討論
4.1 試片切削性狀觀察
4.1.1 SEM觀察
4.1.2 光學顯微鏡觀察
4.2 切口寬度
4.2.1 進給速率的影響
4.2.2 體積濃度的影響
4.2.3 壓力與磨粒號數的影響
4.2.4 結論
4.3 切口比例與切口梯度
4.3.1 進給速率的影響
4.3.2 體積濃度的影響
4.3.3 壓力與磨粒號數的影響
4.3.4 結論
4.4 體積移除率與切削參數分析
4.4.1 進給速率的影響
4.4.2 體積濃度的影響
4.4.3 壓力與磨粒號數的影響
4.4.4 結論
4.5 粗糙度與切削參數分析
4.5.1 進給速率的影響
4.5.2 體積濃度的影響
4.5.3 壓力與磨粒號數的影響
4.5.4 結論
4.6 最大進給速度與切削參數分析
4.6.1 體積濃度的影響
4.6.2 壓力的影響
4.6.3 磨粒號數的影響
4.6.4 結論
4.7 切屑SEM觀察
4.8 噴嘴磨耗觀察
第五章 結 論

Agus, M., Bortolussi, A., Ciccu, R., Kim, W.M., Vargiu, A., “Abrasive Performance in Rock Cutting With AWJ and ASJ”, 8th American Waterjet Conference, 1995, pp. 31~47.
Arola, D., Ramulu, M., “Material Removal in Abrasive Waterjet Machining of Metals: A residual stress analysis,” Wear, 1997, Vol. 211 n2, pp. 302-310.
Bitter, J. G. A., “A study of Erosion Phenomena — Part Ⅰ”, Wear, 1963, Vol. 13, pp. 169-190.
Beands, St., Louis, H., ”Profiling with 400MPa Fine-Bean Abrasive Water Jets”, 10th American Waterjet Conference, 1999, pp. 381~390.
Burnham, C.,“Abrasive Waterjets Come of Age,”Machine Design, 1990, pp. 93~96.
Evans, A. G., “Impact Damage in Ceramics,” Fracture Mechanics of Ceramics, Volume 3, Edited by Bradt, R. C. Bradt, Hasselman, D. P. H., and Lange, F. F., Plenum Press, New York, 1978, pp. 303~330.
Engel, P., “Impact Wear of Materials,” Elsevier, New York, 1976, pp. 303~330.
Frederick, M., ““Water and Sand”, Machine Tool Technology, 1989, pp. 84~95.
Guo, N. S., Louis, H., Meier, G., “Surface Structure and Kerf Geometry in Abrasive Water Jet Cutting,” 7th American Waterjet Conference, 1993, pp. 1 ~25.
Hashish, M., du Plessis, M.P., “Theoretical and Experimental Investigation of Continuous Jet Penetration of Solids,” Journal of Engineering for Industry, ASME, 1978, pp. 88~94.
Hashish, M., du Plessis, M.P., “Prediction Equation Relating High Velocity Jet Cutting Performance to Standoff Distance and Multipasses,” Journal of Engineering for Industry, ASME, 1979, pp. 311~318.
Hashish, M., “A Modeling Study of Metal Cutting With Abrasive Waterjets,” Journal of Engineering Materials and Technology, January 1984, Vol.106, pp. 88-100.
Hunt, D. C. et al., “Surface Finish Characterization in Machining Advanced Ceramics by Abrasive Waterjet,”Proc. of 4th U.S. Water Jet Conf., ASME, 1987, pp. 169~174.
Hashish, M., “A Improved Model for Erosion by Solid Particle Impact,” Proc. Of the 7th International Conference on Erosion by Liquid and Solid Impact, 1987, ELSI Ⅶ, Cambridge, England, Sept, pp. 66/1~66/9.
Hashish, M., “A Model for Abrasive-Waterjet (AWJ) Machining,” Journal of Engineering Materials and Technology, 1989, Vol. 110, pp. 154-162.
Hashish, M., “Abrasive-Fluidjet Machinery System : Entrainment Versus Direct Pumping,” Jet Cutting Technology-Proceedings of the 10th International Conference, 1991, pp. 99-113.
Hashish, M.,“Optimization Factors in Abrasive -Waterjet Machining,” Journal of Engineering for Industry, Vol. 113, 1991, pp. 29~37.
Hashish, M., “Effect of Beam Angle in Abrasive-Waterjet Machining” Journal of Engineering for Industry”, ASME, 1993, Vol. 115 n1, pp. 51-56.
Hashish, M., “Comparative Evaluation of Abrasive Liquid Jet Machining System,” Journal of Engineering for Industry ASME, 1993, pp. 44~50.
Hashish, M., Bothell, D., “Diamond Polishing With Abrasive Suspension Jets,” 7th American Waterjet Conference, 1993, pp. 793~800.
Hocheng, H., and Chang, K. R., “Material Removal Analysis in Abrasive Waterjet Cutting of Ceramic Plates,” J. of Mat. Proc. Tech., 1994, pp. 287~304.
Kovacevic, R.“Surface Texture in Abrasive Waterjet Cutting,”J. of Manufact. Sys., Vol.10, No. 1, 1991, pp. 32~40.
Kovacevic, R.,“Monitoring the Depth of Abrasive Waterjet Penetration,”Int. J. Machine Tools and Manufact., Vol.32(5), 1992, pp. 725~736.
Mason, F., “Water and Sand”, American Mechanist, 1989, pp. 85~94.
Miller, D., ”Micro Abrasive Waterjet”, 10th American Waterjet Conference, 1999, pp. 391~401.
Neusen, K. F. et al.,“Abrasive Waterjet Cutting of Metal Matrix Composites,”Proc. of the 4th U.S. Water Jet Conf., ASME, 1987, pp. 175~182.
Thomas J. “Fluid Jet Technology Fundamentals and Applications,” water jet association, 1993.
Whiting, C. E., Graham. E. E., and Ghorashi, B., “Evaluation of Parameters in A Fluid Cutting Equation,” Journal of Engineering for Industry, ASME, 1990, Vol. 112, pp. 240~244.
Yanagiuchi, S., and Yamagata, H., “ Cutting and Drilling of Glass by Abrasive Jet,”8th Int. Symp. On Jet Cutting Tech., Durham, 1986, pp. 323~329.
鄭國聲,“水刀切削複合材料之研究,”國立清華大學動力機械研究所,碩士論文,June 1991。
張國榮,“水刀切割陶瓷材料之切口分析,”國立清華大學動力機械研究所,碩士論文,June 1992。
黃俊洋, “磨粒水刀切割之應用技術,”機械月刊,June 1992,pp. 215~221。
薛志仲, “加砂水刀於複合材料面切削之研究,”國立清華大學動力機械研究所,碩士論文,June 1993。
黃有執,“電腦輔助之水刀銑削系統,”國立清華大學動力機械研究所,碩士論文,June 1994。
潘家添,“加砂水刀切割之刀口表面粗糙度切析,”國立清華大學動力機械研究所,碩士論文,June 1995。
趙晏樟 ,“加砂水刀水下切割中空管件之研究,”國立清華大學動力機械研究所,碩士論文,June 1997。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top