跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘家群
研究生(外文):Jia-Chiun Pan
論文名稱:調整變數效應之獨立成份分析
論文名稱(外文):Covariate-Adjusted Independent Component Analysis
指導教授:胡賦強胡賦強引用關係
指導教授(外文):Fu-Chang Hu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:53
中文關鍵詞:變數調整獨立成份調整變數效應
外文關鍵詞:ICAindependent component analysisadjustedcovariate-adjustedcovariates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

獨立成份分析是近年來在多變量上發展的統計方法。它被設計在多維度的類神經網路(neural networks)、訊號傳輸(signal processing)資料中尋找隱藏的獨立因子。ICA在其它應用上,也有不錯的結果。如:腦波資料(brain image)、聲頻區別(audio separation)、經濟計量(economics)、生醫工程(biomedical engineering)和生物資訊(bioinformatics)。然而在一份資料中,我們所得到的資訊除了有興趣的混合變數(mixing variables)外,還有可能得到會影響到混合變數的相關因子。在目前做法上,處理ICA資料時,是直接將混合變數放至ICA線性模型,分析結果可得到估計的獨立因子及其對應的係數。在本文的內容考慮到的模型中,發現直接以混合變數進行ICA分析時獲得的係數是有偏的。然而,本文建議先將混合變數在ICA分析前先對因子進行迴歸分析,將其殘差放入ICA分析,獲得的結果較為正確。
Independent component analysis (ICA) is a recently developed statistical and computational technique for discovering mutually independent nongaussian latent variables from observed multivariate data in the fields of neural networks and signal processing. It can potentially be applied to many application fields such as brain imaging, audio separation, telecommunication, feature extraction, economics, psychology, physiology, biomedical engineering, and bioinformatics, whenever the assumptions of statistical independence and nongaussianity are substantively justifiable. In current practice, one applies the standard procedure(s) of ICA directly to the observed multivariate variables, even though they may be affected by some known covariates, to identify the independent components and estimate the mixing coefficients. In this study, we find that ignoring those relevant covariates may lead to a biased result of ICA, and then suggest a covariate-adjusted ICA to minimize such biases by applying the standard procedure(s) of ICA to the residuals from the regressions of the observed multivariate variables on those relevant covariates in a linear ICA model. A simulation study is conducted using the FastICA algorithm to examine the statistical properties of our covariate-adjusted ICA and to derive numerically the sampling distributions of the estimated mixing coefficients as an interesting by-product. Finally, two examples are given for illustration.
Contents
1 Introduction 1
2 The Under-Fitting Problem 3
3 A Two-Step Solution 5
4 Simulations 7
4.1 Data 7
4.2 Approaches 9
4.3 Results 10
4.3.1 Approach 1: The Direct ICA Method 10
4.3.2 Approach 2: The Covariate-Adjusted ICA Method 11
5 Two Examples 11
5.1 Example 1: The Crab Data 12
5.2 Example 2: The Electromyography (EMG) Data 14
6 Discussions 17
7 Appendix: The fastICA Package in S 18
8 References 19
9 Tables 22
10 Figures 33
Berry, M. A. and Linoff, G. (2000). Data Mining: The Art and Science of Customer Relationship Managent. New York, NY: John Wiley Sons.

Bollen, K. A. (1989). Structural Equations with Latent Variables. New York, NY: John Wiley Sons.

Campbell, N. A. and Mahon, R J. (1974). A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology 22: 417-425.

Chatterjee, S. and Hadi, A. S. (1988). Sensitivity Analysis in Linear Regression. New York, NY: John Wiley Sons.

Chen, J. -H. (2004). Validation of the Use of Typing Activity Recording Program, KBlog, as an Monitor for Musculoskeletal Workload. Master Thesis, Graduate Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C. (Chinese).

Greene, W. H. (2003). Econometric Analysis, 5th Ed. Upper Saddle River, NJ: Prentice-Hall.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. San Diego, CA: Acadic Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elents of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer-Verlag (Corrected printing, 2002).

Hyvärinen, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. In: Advances in Neural Information Processing Systs 10 (NIPS*97), Cambridge, MA: MIT Press, pp. 273-279.

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10: 626-634.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. New York, NY: John Wiley & Sons.

Hyvärinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation 9: 1483-1492.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks 13: 411-430.

Svens''en, M., Kruggel, F., and Benali, H. (2002). ICA of fMRI group study data. NeurolImage 16: 551-563.

Venables, W. N. and Ripley B. D. (2002). Modern Applied Statistics with S, 4th Ed. New York, NY: Springer-Verlag.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊