Reference
黃致翔,國立交通大學碩士論文,中華民國九十二年,綠膿桿菌PAO1中雜合感應子的特性分析。Bodey, G., R. Bolivar, V. Fainstein, and L. Jadeja. 1983. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5: 297-313
Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Chang, M., and I. P. Crawford. 1990. The role of indoleglycerol phosphate and the TrpI protein in the expression of trpBA from Pseudomonas aeruginosa. Nucleic Acids Res. 18:979-988.
Craven, R., and T. C. Montie. 1985. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J. Bacteriol. 164:544-549.
Dazins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J. Bacteriol. 175:5934-5944.
De-Lorenzo, V., and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods. Enzymol. 235:386-405.
Deziel, E., Y. Comeau, and R. Villemur. 2001. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with Emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 184:1195-1204.
Egger, L. A., H. Park, and M. Inouye. 1997. Signal transduction via the histidyl-aspartyl phosphorelay. Genes Cells. 2:167-184.
Essar D. W., L. Eberly, A. Hadero, and I. P. Crawford. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolution implications. J. Bacterial. 172: 884-900.
Ferrandez, A., A. C. Hawkins, D. T. Summerfield, and C. S. Harwood. 2002. Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J. Bacteriol. 184:4374-4383.
Fields, S. 1993. The two-hybrid system to detect protein-protein interactions. METHODS: A Companion to Meth. Enzymol. 5:116–124.
Finelli, A., C. V. Gallant, K. Jarvi, and L. L. Burrows. 2003. Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185:2700-2710.
Fletcher, M. 1977. The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol. 23:1-6.
Freeman, J. A.,and Bassler, B. L. 1999. Sequence and fuction of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. bacterial. 181:899-906.
Fujita, M., K. Tanaka, H. Takahashi, and A. Amemura. 1994. Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol. Microbiol. 13:1071-1077.
Furste, J. P., and W. Pansegrau, R. Frank, H. Blocker, P. Scholz, M. Bagdasarian, and E. Lanka. 1986. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 48:119-131.
Garrett, D. S., Y. J. Seok, A. Peterkofsky, A. M. Gronenborn, and G. M. Clore. 1999. Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat. Struct. Biol. 6:166-173.
Georgelli D., A. S. Lynch, and E. C. Lin. 1997. In vitro phosphorylation study of the Arc two component signal transduction system of Escherichia coli. J. Bacteriol. 179:5429-5435
Han, C. Y., I. P. Crawford, and C. S. Harwood. 1991. Up-promoter mutations in the trpBA operon of Pseudomonas aeruginosa. J. Bacteriol. 173:3756-3762.
Hancock, R. E., and H. Nikaido. 1978. Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J. Bacteriol. 136:381-90.
Harper, J. W., G. R. Adami, N.Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816.
Hoch, J. A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3:165-170.
Iuchi, S., and E. C. Lin. 1988. ArcA, a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways Proc. Natl. Acad. Sci. USA. 85:1888-1892.
Ishige, K., S. Nagassawa, S. Tokishita, and T. Mizuno. T. 1994. A novel device of bacterial signal transducer. EMBO J. 13:5195-5202.
James, P., J. Halladay, and E. A. Craig. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 144:1425–1436.
Kang, C. M., M. S. Brody, S. Akbar, X. Yang, and C. W. Price. 1996. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress. J. Bacteriol. 178:3846-3853.
Kato J., T. Nakamura, A. Kuroda, and H. Ohtake. 1999. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem. 63:155-161.
Knobloch, J. K, K. Bartscht, A. Sabottke, H. Rohde, H. H. Feucht, and D. Mack. 2001. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol. 183:2624-2633.
Kohler, T., L. K. Curty, F. Barja, C. Van Delden, and J. C. Pechere. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182:5990–5996.
Li, L., S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski. 1994. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl. Acad. Sci. USA 91:5012–5016.
Li, S., A. Ault, C. L. Malone, D. Raitt, S. Dean, L. H. Johnston, R. J. Deschenes, and J. S. Fassler. 1998. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators Ssk1p and Skn7p. EMBO J. 17:6952–6962.
Manch, J. N. and I. P. Crawford. 1982. Genetic evidence for a positive-acting regulatory factor mediating induction in the tryptophan pathway of Pseudomonas aeruginosa. J. Mol. Biol. 156:67-77
Martinez-Argudo, I., P. Salinas, R. Maldonado, and A. Contreras. 2002. Domain interaction on ntr signal transduction pathway: two-hybrid analysis of mutant and truncated derivatives of histidine kinase NtrB. J. Bacteriol. 184:200-206.
Matsushika, A., and T. Mizuno. 1998. A dual- signaling mechanism mediated by the ArcB hybrid sensor kinase containing the histidine-containing phosphotransfer domain in Escherichia coli. J. Bacteriol. 180:3973-3977.
Mavrodi D. V., R. F. Bonsall, S. M. Delaney, M. J. Soule, G. Phillips, and L. S. Thomashow. 2001. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183:6454-6465.
Miller, J. H. 1972. Experiments in molecular genetics. Cold spring Harbor Laboratory, Cold Spring Harbor, New York.
Ohta N., and A. Newton. 2003. The core dimmerization domains of histidine kinase contain recognition specificity for the cognate response regulator. J. Bacteriol. 185:4424-4431.
O’Toole, G. A., and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295-304.
O’Toole, G. A., K. A. Gibbs, P. W. Hager, P.V. Phibbs, and R. Kolter. 2000. The global carbon metabolism regulator Crc is a component of a signal trasduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182:425-431.
Parkins, M. D., H. Ceri, and D. G. Storey. 2001. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol. Microbiol. 40:1215-1226.
Parkinson, J. S., and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71-112.
Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell. 73:857-871
Perraud A. L., V. Weiss, and R, Gross. 1999. Signaling pathway in two-component phosphorelay systems. Trends Microbiol. 7:115-120.
Perraud A. L., B. kimmel, V. Weiss, and R. Gross. 1998. Specificity of the BvgAS and EvgAS phosphorelay is mediated by the C-terminal Hpt domains of the sensor proteins. Mol. Microbiol. 27:875-887.
Rangaswamy, V., and C. L. Bender. 1992. Phosphorylation of CorS and CorR, regulatory proteins that modulate production of phytotoxin coronatine in Pseudomonas syringae. FEMS Microbiol. Lett. 193:13-18.
Rashid, M. H., and A. Kornberg. 2000. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 97:4885–4890.
Reimmann, C., M. Beyeler, A. Latifi, H. winteler, M. Foglino, A. Lazdunski, and D. Haas. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, canide, and lipase. Mol. Microbiol. 24:309-319.
Rodrigue A., Y. Quentin, A. Lazdunski, V. Mejean, and M. Foglino. 2000. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol. 8:498-504.
Sambrook J., and D. W. Russell. 2001. Molecular Cloning: a laboratory manual—3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Song H. K., J. Y. Lee, M. G. Lee, J. Moon, K. Min, J. K. Yang, and S. W. Suh. 1999. Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae. J. Mol. Biol. 293:753-761.
Stock A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183-215.
Stout, V. 1994. Regulation of capsule synthesis includes interactions of the RcsC/RcsB regulatory pair. Res. Microbiol. 145:389-392.
Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 406:959-964.
Suh, S. J., L. Silo-Suh, D. E. Woods, D. J. Hassett, S. E. West, and D. E. Ohman. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol. 181:3890-3897.
Tsuzuki, M., K. Ishige, and T. Mizuno. 1995. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol. Microbiol 18:953-962.
Takeda, S., Y. Fujisawa, M. matsubara., H. Aiba., and T. Mizuno. 2001. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC-YojN- RcsB signaling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol. 40: 440-450.
Vallet I., J. W. Olson, S. Lory, A. Lazdunski, and A. Filloux. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA. 98:6911-6916.
West A. H., and A. M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26:369-376
Wimpenny, J. W. T., and R. Colasanti. 1997. A unifying hypothesis for structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol. 22:1-16.
Wise, A. A., and C. W. Prise. 1995. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor �禒 in response to environmental signals. J. Bacteriol. 177:123-133.
Wurgler-Murphy, S. M., and H. Saito. 1997. Two-component signal transducers and MAPK cascades. Trends Biochem. Sci. 22:172-176.
Xu, K. D., M. J. Franklin, C. H. Park, G. A. McFeters, and P. S. Stewart. 2001. Gene expression and protein levels of the stationary phase sigma factors, RpoS, in continuously-fed Pseudomonas aeruginosa biofilm. FEMS Microbiol. Lett. 199:67-71.
Xu Q., and H. A. West. 1999. conservation of structure and function among histidine-containing phosphotransfer (Hpt) domains as revealed by the crystal structure of YPD1. J. Mol. Biol. 292: 1039-1050.
Zhou, L., X. H. Lei, B. R. Bochner, and B. L. Wanner. 2003. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two- component systems. J. Bacteriol. 185:4956-4972.