跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱夢婷
研究生(外文):Meng-Ting Chiou
論文名稱:拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響
論文名稱(外文):Effect of test temperature on tensile properties and microstructure of a multi-phase medium Mn steel
指導教授:張志溥
指導教授(外文):Chih-Pu Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:173
中文關鍵詞:顯微組織應變誘發相變化拉伸性質中錳鋼拉伸溫度
外文關鍵詞:deformation-induced transformationmedium Mn steeltensile temperaturemicrostructuretensile properties
相關次數:
  • 被引用被引用:4
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究不同拉伸溫度對中錳鋼拉伸性質與顯微組織的影響,實驗發現在拉伸溫度為75℃時有最大的伸長量為85%,其抗拉強度略低於室溫,因此,會有最佳的強延積,且從顯微組織的觀察亦能發現大量的應變誘發麻田散鐵的生成。拉伸溫度為100℃時鋼材的伸長量下降至最低值,此溫度接近鋼材的Md溫度,在100℃時應變誘發麻田散鐵的相變化會減緩,取而代之的是應變誘發變韌鐵的相變化,但其量很少且組織極為細小。拉伸溫度高於150℃以後,鋼材強度持續下降,鋼材的伸長量開始上升,此時應變誘發麻田散鐵不再形成,而應變誘發變韌鐵的量持續上升且組織逐漸粗大。當拉伸溫度達300℃時,應變誘發變韌鐵幾乎不再生成,此時鋼材的伸長量再度下降。
The purpose of the study is to know the effect of test temperature on the tensile properties and microstructures of a medium manganese steel. The range of the test temperature is from room temperature to 300℃. The results showed that when tested at 75℃, highest elongation of 85% together with a large amount of deformation-induced martensites were obtained. At 100℃, the amount of deformation-induced martensite was reduced, and replaced by a small amount of deformation-induced bainite, so that caused a significant drop of elongation. When the test temperatures were higher than 150℃, the strength of the steel was reduced, and the elongation of the steel started to rise. When the test temperature was increased to 300℃, no deformation-induced transformation was found and both the tensile strength and elongation of the steel were reduced.
目錄
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xix
一、前言 1
二、文獻回顧 2
2-1麻田散鐵 2
2-1-1麻田散鐵不同相變化溫度之定義 3
2-1-2板狀麻田散鐵(Lath martensite) 4
2-1-3盤狀麻田散鐵(Plate martensite) 4
2-1-4透鏡狀麻田散鐵(Lenticular martensite) 5
2-2TRIP鋼 5
2-2-1 TRIP效應 6
2-2-2 TRIP效應與殘留沃斯田鐵體積分率的關係 6
2-2-3 TRIP鋼相變化過程中的化學及機械驅動能 7
2-2-4 沃斯田鐵預先變形(priordeformation)的TRIP效應 7
2-2-5透過ausforming和其他方法強化試片 8
2-3應力誘發與應變誘發麻田散鐵 8
2-4麻田散鐵的成核機制 9
2-5溫度對TRIP效應的影響 10
2-5-1溫度對TRIP鋼顯微結構變形機構的影響 10
2-5-2溫度對TRIP鋼成核速率的影響 12
2-5-3溫度對TRIP鋼機械性質的影響 14
2-5-4 M_s^σ溫度與TRIP鋼相轉變行為之間的關係 17
2-5-5溫度對疊差能的影響 18
2-5-6合金成份對TRIP鋼相轉變溫度的影響 18
2-5-6溫度與麻田散鐵體積分率的關係 19
2-6拉伸溫度對應變誘發麻散鐵和應變誘發變韌鐵相變化的影響 20
三、研究目的 22
四、實驗方法 23
4-1實驗材料 23
4-2實驗步驟 23
4-3拉伸試驗 23
4-4顯微組織分析 24
4-4-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
4-4-2背向散射電子繞射(Electron Backscattered Scattered Diffraction, EBSD) 24
4-4-3 X光能量散佈光譜儀(Energy dispersive spectrometers,EDS) 25
4-4-4 X-ray繞射分析(X-ray diffraction, XRD)進行試片相分率的分析。 25
五、實驗結果 26
5-1不同拉伸溫度之機械性質 26
5-2拉伸前顯微組織 27
5-3不同拉伸溫度之拉伸後顯微組織 28
5-3-1室溫下拉伸後顯微組織 28
5-3-2 50℃拉伸後顯微組織 28
5-3-3 75℃拉伸後顯微組織 29
5-3-4 100℃拉伸後顯微組織 29
5-3-5 125℃拉伸後顯微組織 30
5-3-6 150℃拉伸後顯微組織 30
5-3-7 175℃拉伸後顯微組織 30
5-3-8 255℃拉伸後顯微組織 31
5-3-9 300℃拉伸後顯微組織 31
5-4相分率分析 32
5-5晶粒尺寸 33
5-6 EDS成份分析 34
六、討論 35
6-1不同拉伸溫度下拉伸後EBSD部份區域未解出之可能原因 35
6-2各拉伸溫度下之變形組織 38
6-3各溫度拉伸性質與顯微組織之間的關係 40
七、 結論 42
八、參考文獻 43
八、參考文獻
[1]J. Zrnik, I. Mamuzic, and S. V. Dobatkin, "Recent progress in high strength low carbon steels," Metalurgija, vol. 45, p. 323, 2006.
[2]J. Talonen and H. Hänninen, "Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels," Acta Materialia, vol. 55, p. 6108, 2007.
[3]S. Chatterjee, "Transformations in TRIP-assisted Steels: Microstructure and Properties," Darwin College, University of Cambridge, 2006.
[4]i. A. K. J.W. Christian, R.B. Nicholson (Eds.), Strengthening Methods in Crystals, Wiley, New York, p. 261, 1971.
[5]G. Krauss, "Martensite in steel: strength and structure," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 273, p. 40, 1999.
[6]G. Haidemenopoulos and A. Vasilakos, "Modelling of austenite stability in low-alloy triple-phase steels," Steel research, vol. 67, p. 513, 1996.
[7]B. C. De Cooman, "Structure-properties relationship in TRIP steels containing carbide-free bainite," Current Opinion in Solid State & Materials Science, vol. 8, p. 285, 2004.
[8]H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, "Crystallographic features of lath martensite in low-carbon steel," Acta Materialia, vol. 54, p. 1279, 2006.
[9]A. Shibata, S. Morito, T. Furuhara, and T. Maki, "Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys," Acta Materialia, vol. 57, p. 483, 2009.
[10]V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, "The enhancement of ductility in high-strength steels," ASM Trans Quart, vol. 60, pp. 252, 1967.
[11]I. amura, "Deformation-induced martensitic transformation and transformation-induced plasticity in steels," Metal Science, vol. 16, p. 245, 1982.
[12]T. Maki, H. Onodera, and I. Tamura, "Trip-effect in Fe-Ni-Cr alloy," J. Soc. Mater. Sci. Jpn, vol. 24, p. 150, 1975.
[13]J. R. Patel and M. Cohen, "Criterion for the action of applied stress in the martensitic transformation," Acta Metallurgica, vol. 1, p. 531, 1953.
[14]D. Fahr, "Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels," Metallurgical Transactions, vol. 2, p. 1883, 1971.
[15]P. C. Maxwell, A. Goldberg, and J. C. Shyne, "Stress-Assisted and strain-induced martensites in FE-NI-C alloys," Metallurgical Transactions, vol. 5, p. 1305, 1974.
[16]H. N. Byun TS, Farrell K., "Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels," Acta Mater, vol. 52, p. 3889, 2004.
[17]M. D. Huang GD, Krauss G., "Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet," Metall Trans A vol. 20, p. 1239, 1989.
[18]P. A. Lecroisey F, "Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system," Metall Trans, vol. 3, p. 387, 1972.
[19]N. P. Talonen J, Pape G, Ha¨nninen H. , Metall Mater Trans A, vol. 36, p. 421, 2005.
[20]T. T. Talonen J, Ha¨nninen H., "Effect of temperature on tensile behaviour and microstructural evolution of nitrogen alloyed austenitic stainless steel.," In: Dong H, Su J, Speidel M, editors. Proceedings of international conference on high nitrogen steels HNS2006. Jiuzhaigou, China: Metallurgical Industry Press, p. 52, 2006.
[21]B. TS., "On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels," Acta Mater vol. 51, p. 3063, 2003.
[22]D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, "Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending," Journal of Applied Crystallography, vol. 47, p. 936, 2014.
[23]J. Kim and B. De Cooman, "On the stacking fault energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al twinning-induced plasticity steel," Metallurgical and Materials Transactions A, vol. 42, p. 932, 2011.
[24]L.Remy and A. Pineau, "Twinning and strain-induced fcc→ hcp transformation on the mechanical properties of Co Ni Cr Mo alloys," Materials Science and Engineering, vol. 26, p. 123, 1976.
[25]K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue, "Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys," ISIJ international, vol. 29, p. 868, 1989.
[26]S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, "Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature," Metallurgical and Materials Transactions A, vol. 47, p. 49, 2016.
[27]J. Venables, "The martensite transformation in stainless steel," Philosophical Magazine, vol. 7, p. 35, 1962.
[28]G. Olson and M. Cohen, "Kinetics of strain-induced martensitic nucleation," Metallurgical transactions A, vol. 6, p. 791, 1975.
[29]T. Angel, "Formation of martensite in austenitic stainless steels," J. Iron Steel Inst., vol. 177, p. 165, 1954.
[30]T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara, "An experimental study of the martensite nucleation and growth in 18/8 stainless steel," Acta Metallurgica, vol. 25, p. 1151, 1977.
[31]G. Stone and G. Thomas, "Deformation induced alpha and epsilon martensites in Fe-Ni-Cr single crystals," Metallurgical and Materials Transactions B, vol. 5, p. 2095, 1974.
[32]I. Tamura and T. Maki, "Toward improved ductility and toughness, Climax Mo," Dev. Co.(Japan), Tokyo, vol. 185, 1971.
[33]I. Tamura, T. Maki, and H. Hato, "Morphology of strain-induced martensite and the transformation-induced plasticity in Fe-Ni and Fe-Cr-Ni alloys," Trans. Iron and Steel Inst. Jap., 1970.
[34]K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, "Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel," Metallurgical Transactions A, vol. 23, p. 3085, 1992.
[35]J. A. Jiménez, M. Carsí, O. A. Ruano, and G. Frommeyer, "Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel," Materials Science and Engineering: A, vol. 508, p. 195, 2009.
[36]G. B. Olson and M. Azrin, "Transformation behavior of TRIP steels," Metallurgical and Materials Transactions A, vol. 9, p. 713, 1978.
[37]L. Samek, E. De Moor, J. Penning, and B. De Cooman, "Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels," Metallurgical and Materials Transactions A, vol. 37, p. 109, 2006.
[38]S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, "Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior," Metallurgical Transactions A, vol. 13, p. 619, 1982.
[39]詹智宇, "熱處理溫度與時間對多相中錳鋼冷軋板之組織與拉伸性質之影響," 中山大學 材光所 碩士論文, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊