跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪順斌
研究生(外文):Shun-Bin Hong
論文名稱:利用含硫有機物改質鋁鎂層狀複合金屬吸附鉻和鉻酸鹽之研究
論文名稱(外文):Removal of chromium (III) and dichromate by Mg-Al LDHs intercalated with organic compounds containing sulfur atom
指導教授:趙煥平
指導教授(外文):Huan-Ping Chao
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:101
中文關鍵詞:乙基黃原酸鹽半胱胺酸十二烷基硫酸鹽吸附重金屬離子
外文關鍵詞:ethyl xanthatecysteinedodecylsulfonateadsorptionheavy metal ions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究希望能夠發展出同時吸附鉻酸鹽與三價鉻之吸附劑,因此使用不同濃度的乙基黃原酸鉀、半胱胺酸、十二烷基硫酸鈉三種有機含硫陰離子插層鎂鋁層狀複合金屬氫氧化物,並利用共沉澱法製作成吸附劑,合成之吸附劑在溶液pH為4與5 被應用於吸附溶液中鉻酸鹽與三價鉻。製備完成之吸附劑利用XPS、XRD、SEM和FTIR鑑定其性質,並利用吸附平衡計算各類污染物之吸附容量以及探討可能的吸附機制。
研究結果顯示出,經過有機酸陰離子改質後之十二烷基硫酸鈉-LDHs、乙基黃原酸鹽-LDHs及半胱胺酸-LDHs皆可吸附本研究所選定的陽離子三價鉻及陰離子鉻酸鹽。經過有機酸陰離子改質後之LDHs可以與三價鉻產生錯合作用將其去除,在基本性質測定中發現改質後之LDHs 層間仍存在碳酸鹽,因此可以利用陰離子交換機制將鉻酸鹽去除,並由此確定已成功製作出鉻酸鹽與三價鉻之吸附劑。
經由改質所製成的吸附劑除了十二烷基硫酸鹽插層後所獲得的吸附效果較差外,另兩種陰離子有機物皆可對於設定的污染物產生高吸附容量。在不同溶液pH之條件下,十二烷基硫酸鹽在pH=5時吸附陽離子型重金屬污染物時有較佳吸附效果;乙基黃原酸鹽在pH4及pH5吸附陽離子及陰離子型重金屬污染物則差異不大;半胱胺酸則是pH=5時對陽離子及陰離子型重金屬污染物吸附有較佳效果。整體吸附劑之效率為:乙基黃原酸鹽-LDHs>半胱胺酸-LDHs>十二烷基硫酸鹽-LDHs。
The objective of this study is to develop an adsorbent that can simultaneously adsorb dichromate and chromium ion. Various concentrations of organic compounds, such as ethyl xanthate, L-cysteine and dodecyl sulfate, containing sulfur atom were used to intercalate Mg-Al layered double hydroxides (Mg-Al LDHs) through a co-precipitation method. The produced adsorbents were used to adsorb dichromate and chromium ion under pH 4 and 5. The adsorbents were characterized by XPS, SEM, FTIR and XRD. The adsorption capacity of target contaminants was calculated by adsorption equilibrium and the possible adsorption mechanism was discussed.
The results indicated the Mg-Al LDHs intercalated with ethyl xanthate, L-cysteine and dodecyl sulfate can effectively adsorb dichromate and chromium (III) ion. The adsorption mechanism for chromium ion was regarded as complexation reaction. Because carbonate was found in the interlayer, the adsorption mechanism for dichromate was assumed as anion exchange. The demonstrated the synthesized adsorbents can remove cationic and anionic heavy metal ions.
The adsorbents produced by the modification are in addition to the poor adsorption effect obtained after the dodecyl sulfonate intercalation, and the other two anionic organisms can produce high adsorption capacity for the contaminants. For the heavy metal solution at two pH values, the LDHs intercalated by dodecyl sulfonate adsorbs cationic heavy metal contaminants at pH= 5, and the LDHs intercalated by ethyl xanthate removed cationic and anionic heavy metals at pH4 and pH5. The LDHs intercalated by L-cysteine can generate a better effect for the cationic and anionic heavy metal ions at pH5. The overall efficiency of the adsorbent is decrease as the following order: ethyl xanthate-LDHs> cysteine-LDHs> dodecylsulfonate-LDHs.
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的及內容 2
第二章 文獻回顧 4
2-1層狀複合金屬氫氧化物之特性 4
2-2 LDHs製備方法 7
2-2-1共沉澱法 7
2-2-2水熱合成法 8
2-2-3 煅燒復原法 9
2-2-4 離子交換法 9
2-2-5 即時合成法 10
2-3 合成LDHs影響因素 11
2-3-1 原料物質的比率 11
2-3-2晶化時間和溫度 11
2-3-3 pH值 11
2-4 LDHs之應用 12
2-5 常見產生鉻離子產業與處理方式 17
2-5-1 廢水中之鉻離子 17
2-5-2 鉻離子之處理方法 18
2-6等溫吸附曲線類型 23
第三章 實驗步驟與方法 27
3-1 研究架構 27
3-2 實驗藥品 29
3-3 實驗儀器 30
3-4 實驗項目及流程 34
3-4-1 水熱法製備Mg-Al LDHs 34
3-4-2 製備有機酸陰離子插層之LDHs 35
第四章 結果與討論 40
4-1 吸附劑基本性質 40
4-1-1 SEM之測定分析 40
4-1-2 FTIR之測定分析 43
4-1-3 XPS之測定分析 46
4-1-4 XRD之測定分析 49
4-2 Ex・Mg-Al LDHs對污染物之吸附 51
4-2-1 Ex・Mg-Al LDHs 之吸附等溫線 52
4-2-2 Ex・Mg-Al LDHs在pH=4之吸附量 60
4-2-3 Ex・Mg-Al LDHs在pH=5之吸附量 61
4-3 DS・Mg-Al LDHs對污染物之吸附 62
4-3-1 DS・Mg-Al LDHs 之吸附等溫線 62
4-3-2 DS・Mg-Al LDHs在pH=4之吸附量 68
4-3-3 DS・Mg-Al LDHs在pH=5之吸附量 68
4-4 L-cys・Mg-Al LDHs之吸附等溫線 69
4-4-1 L-cys・Mg-Al LDHs 之吸附等溫線 70
4-4-2 L-cys・Mg-Al LDHs 在pH=4之吸附量 77
4-4-3 L-cys・Mg-Al LDHs pH=5對污染物之吸附量 79
4-5 合成吸附劑之應用與評析 80
第五章 結論與建議 82
5-1 結論 82
5-2 未來建議 82
參考文獻 84




圖目錄

圖2-1 LDHs 結構示意圖[1] 4
圖2-2 典型液體吸附類型[40] 23
圖3-1 研究架構 28
圖3-2水熱合成法製備Mg-Al LDHs之流程 35
圖3-3共沉澱法合成LDHs流程圖 36
圖4-1鎂鋁水滑石及其插層過後之SEM圖 42
圖4-2 Mg-Al LDH及其插層過後之FTIR圖 46
圖4-3 XRD圖譜 51
圖4-4 pH=4時Ex・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 54
圖4-5 pH=4時Ex・Mg-Al LDHs(60mmol)對鉻酸鹽之吸附平衡曲線 54
圖4-6 pH=4時Ex・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 55
圖4-7 pH=4時Ex・Mg-Al LDHs(12.5mmol)對鉻酸鹽之吸附平衡曲線 55
圖4-8 pH=4時Ex・Mg-Al LDHs(6.25mmol)對鉻離子之吸附平衡曲線 56
圖4-9 pH=4時Ex・Mg-Al LDHs(6.25mmol)對鉻酸鹽之吸附平衡曲線 56
圖4-10pH=5時Ex・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 57
圖4-11pH=5時Ex・Mg-Al LDHs(60mmol)對鉻酸鹽之吸附平衡曲線 57
圖4-12pH=5時Ex・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 58
圖4-13pH=5時Ex・Mg-Al LDHs(12.5mmol)對鉻酸鹽之吸附平衡曲線 58
圖4-14pH=5時Ex・Mg-Al LDHs(6.25mmol)對鉻離子之吸附平衡曲線 59
圖4-15pH=5時Ex・Mg-Al LDHs(6.25mmol)對鉻酸鹽之吸附平衡曲線 59
圖4-16 pH=4時Ds・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 64
圖4-17 pH=4時Ds・Mg-Al LDHs(60mmol)對鉻酸鹽之吸附平衡曲線 64
圖4-18 pH=4時Ds・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 65
圖4-19 pH=4時Ds・Mg-Al LDHs(12.5mmol)對鉻酸鹽之吸附平衡曲線 65
圖4-20 pH=5時Ds・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 66
圖4-21 pH=5時Ds・Mg-Al LDHs(60mmol)對鉻酸鹽之吸附平衡曲線 66
圖4-22 pH=5時Ds・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 67
圖4-23 pH=5時Ds・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 67
圖4-24 pH=4時L-cys・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 71
圖4-25 pH=4時L-cys・Mg-Al LDHs(60mmol)對鉻酸鹽吸附平衡曲線 72
圖4-26 pH=4時L-cys・Mg-Al LDHs(6.25mmol)對鉻離子之吸附平衡曲線 72
圖4-27 pH=4時L-cys・Mg-Al LDHs(6.25mmol)對鉻酸鹽之吸附平衡曲線 73
圖4-28 pH=4時L-cys・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 73
圖4-29 pH=4時L-cys・Mg-Al LDHs(12.5mmol)對鉻酸鹽之吸附平衡曲線 74
圖4-30 pH=5時L-cys・Mg-Al LDHs(60mmol)對鉻離子之吸附平衡曲線 74
圖4-31 pH=5時L-cys・Mg-Al LDHs(60mmol)對鉻酸鹽之吸附平衡曲線 75
圖4-32 pH=5時L-cys・Mg-Al LDHs(6.25mmol)對鉻離子之吸附平衡曲線 75
圖4-33 pH=5時L-cys・Mg-Al LDHs(6.25mmol)對鉻酸鹽之吸附平衡曲線 76
圖4-34 pH=5時L-cys・Mg-Al LDHs(12.5mmol)對鉻離子之吸附平衡曲線 76
圖4-35 pH=5時L-cys・Mg-Al LDHs(12.5mmol)對鉻酸鹽之吸附平衡曲線 77



表目錄

表3-1實驗藥品 30
表3-2儀器名稱、廠牌及型號 30
表4-1 各吸收波數下對應之有機官能基 43
表4-2各吸附劑XPS測定之元素組成百分比(%) 47
表4-3 Ex・Mg-Al LDHs在pH=4對污染物吸附量(mg/g) 60
表4-4 Ex・Mg-Al LDHs在pH=5對污染物吸附量(mg/g) 62
表4-5 DS・Mg-Al LDHs在pH=5對污染物吸附量(mg/g) 68
表4-6 DS・Mg-Al LDHs在pH=5對污染物吸附量(mg/g) 69
表4-7 L-cys・Mg-Al LDHs在pH=4對污染物之吸附量(mg/g) 78
表4-8 L-cys・Mg-Al LDHs在pH=5對污染物之吸附量(mg/g) 80
[1] http://tresen.vscht.cz/min/en/research-team-mineralogy
[2] Cavani, F., Vaccari, A. T. 1991. A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301.
[3] Kooli, F., Kosuge K., Tsunashima, A. 1995. New Ni-Al-Cr and Ni-Al-Fe carbonate hydrotalcite-like compounds: synthesis and characterization. J. Solid State Chem. 118 (2), 285–291.
[4] He, J. ,Wei, M., Li, B., Kang, Y., Evans, D. G., Duan, X. 2006. Preparation of layered double hydroxides. Struct. Bond. 119 (1), 89–119.
[5] Ogawa, M., Asai, S. 2000. Hydrothermal synthesis of layered double hydroxide -deoxycholate intercalation compounds. Chem. Mater. 12 (11), 3253–3255.
[6]Erickson,K. L., Bostroma, T. E., Frosta, R. L. 2005. A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater. Lett. 59 (2–3), 226–229.
[7]Nicole, M. D., Pisson, J., Israeli,Y., Christine,T. G., Besse, J. P., Morel, J. P. 2003. Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 13 (10), 2582–2585.
[8]呂律,彭書傳,陳天虎等,2008. 即時合成 LDH 去除焦磷酸鹽鍍銅廢水中的磷, 武漢理工大學學報, 30 : 65-68。
[9]樂金東,於少明,2010. 即時合成含鉛類水滑石處理含鉛廢水的研究,安徽化工, 36(1) : 35-37。
[10]Ogawa, M., Kaiho,H., 2002. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir, 18(11), 4240-4242.
[11] Rives, V., 2001. Layered Double Hydroxides: Present and Future, Nova Science Publishers, Inc., New York, p. 350.
[12] Li, F., Duan, X. 2006. Applications of layered double hydroxides.Struct. Bond. 119 (1), 193–223
[13] Evans, D.G., Duan, X., 2006. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 6(5), 485–496.
[14] Roelofs, J.C.A.A. , Lensveld D. J., Dillen van, A. J. , Jong de K. P., 2001. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation. J. Catal. 203 (1), 184–191.
[15]Palomares,A. E., Prato, J. G., Rey, F., Corma, A., 2004. Using the memory effect of hydrotalcites for improving the catalytic reduction of nitrates in water. J. Catal. 221 (1), 62–66.
[16]Shimizu, H., Okubo, M., Nakamoto, A., Enomoto, M., Kojima, N. 2006. Enhancement of the curie temperature by isomerization of diarylethene (DAE) for an organic-inorganic hybrid system: Co 4 (OH) 7 (DAE) 0.5・3H 2 O. Inorg. Chem. 45 (25), 10240–10247.
[17] Chen, H., Wang, J. M., Pan,T., Zhao,Y. L., Zhang,J. Q., Cao, C. N., 2003. Physicochemical properties and electrochemical performance of Al-substituted α-Ni(OH)2 with additives for Ni-metal hydride batteries. J. Electrochem. Soc. 150 (11), A1399–A1404.
[18] Liao, C.S., Ye, W.B., 2004. Structure and conductive properties of poly (ethylene oxide) /layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 49 (27), 4993–4998.
[19] Benhammoua, A., Yaacoubi, A., Nibou L., anouti, B. T. 2007. Chromium(VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite, J. Hazard. Mater. 140, 104–109.
[20]Yusof, A. M. , Malek, N.A. N. N. 2009. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J. Hazard. Mater.162, 1019–1024.
[21]Hu, B., Luo, H. 2010. Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide, Appl. Surf. Sci., 257, 769–775.
[22] Chao H.-P., Chen, S.-H. 2012. Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide–modified NaY zeolite, Chem. Eng. J. 193-194, 283–289.
[23] Huang, F.-C., Han, Y.-L., Lee, C.-K., Chao, H.-P. 2016. Removal of cationic and oxyanionic heavy metals from water using hexadecyltrimethylammonium -bromide -modified zeolite, Desalination Water Treat. 57 (38), 17870-17879.
[24]Yue, X., Liu, W., Chen, Z., Lin, Z. 2017. Simultaneous removal of Cu(II) and Cr(VI) by Mg–Al–Cl layered double hydroxide and mechanism insight. J . Environ. Sci. S53, 16-26.
[25]Srinivasa V. P., Kamath, V. 2008. Chromate uptake characteristics of the pristine layered double hydroxides of Mg with Al. Solid State Sciences, 10, 260-266
[26]Kameda, T., Takeuchi, H., Yoshioka, T., 2008. Uptake of heavy metal ions from aqueous solution using Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate. Sep. Purif. Technol. 62(2), 330-336.
[27]Kameda, T., Takeuchi, H., Yoshioka, T., 2008. Uptake of heavy metal ions from aqueous solution using Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate. Sep. Purif. Technol. 62(2), 330-336.
[28] Kameda,T. , Takeuchi, H., Yoshioka, T. 2009. Hybrid inorganic/organic composites of Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate prepared by co-precipitation. Mater. Res. Bull. 44, 840-845.
[29]Kameda , T., Uchiyama, N., Park,K. S., Grause,G., Yoshioka,T. 2008. Removal of hydrogen chloride from gaseous streams using magnesium-aluminum oxide. Chemosphere 73, 844–847.
[30]Liang, X., Hou,W., Xu, Y., Sun,G., Wang, L., Sun, Y. , Qin,X. 2010. Sorption of Lead Ion by Layered Double Hydroxide Intercalated with Ethylene Diamine Tetraacetic Acid. Colloid Surf. A 366, 50-57.
[31] Rojas, R., Perez, M. R., Erro, E. M., Ortiz, P. I., Ulibarri, M. A., Giacomelli, C. E, 2009. EDTA modified LDHs as Cu2+scavengers: Removal kinetics and sorbent stability. J. Colloid Interf. Sci. 331 , 425–431
[32] Tsyganok, A., Tsunoda, T., Hamakawa, S., Hayakawa, T. 2003. Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides. J. Catal. 213(2),191-203
[33]Anirudhan,T. S., Suchithra, P. S. 2008. Synthesis and characterization of tannin‐immobilized hydrotalcite as a potential adsorbent of heavy metal ions in effluent treatments.Appl. Clay Sci. 42, 214-223. 
[34] Chao, H.-P., Chen, S.-H. 2012. Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide–modified NaY zeolite. Chem. Eng. J., 193-194, 283–289.
[35] Gurgel, L. V. A., Pereira de Freitas , R., Gil, L. F.2008. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions bysugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohyd. Polym. 74 , 922–929
[36] Ajmal, M., Rao, R. A. K., Ahmad, R., Ahmad, J. 2000. Adsorption studies on citrus reticulate (fruit peel of orange): removal and recovery of Ni from electroplateing wastewater. J. Hazard. Mater.79, 117-131.
[37] Aksu, Z., İşoğlu İ.A. 2005. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 40 , 3031-3044.
[38] Semerjian, L. 2010. Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated pinus halepensis sawdust. J. Hazard. Mater. 173 ,236-242.
[39] 黃依文,2014,丙烯酸改質生物吸附劑吸附水中重金屬之研究,中原大學碩士論文,中壢.
[40] Sposito G., 1984. The Surface Chemistry of Soil. Oxford University Press, New York.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊