跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉鴻萬
研究生(外文):Liu, Hung-Wan
論文名稱:含人工材料之四波束號角天線設計
論文名稱(外文):A four-beam E-plane horn antenna design incorporating a wire-based metamaterial
指導教授:黃瑞彬黃瑞彬引用關係
指導教授(外文):Hwang, Ruey-Bing
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:59
中文關鍵詞:號角天線人工材料週期結構
外文關鍵詞:horn antennametamaterialperiodic structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們設計了一個含人工材料之四波束號角天線,它是結合週期結構的特殊折射現象與號角天線的設計原理而成。人工材料經過三種分析方式設計其金屬柱的尺寸及晶格間的距離,合成擁有等效折射係數趨近於0的二維晶格人工材料。因此,一旦電磁波由放置於週期結構中的同軸線激發,折射波傳遞的方向會幾乎與介質和空氣的交界面垂直。根據這樣的物理現象,我們製作了一個四路的功率分歧器,使其把能量平均的分往四個方向,再導引各路的能量進入E-plane號角天線中,使其擁有四個錐狀波束的輻射場型。不僅在理論上計算出其色散與相位關係,並經過軟體的模擬及實際的量測其反射係數與輻射場型,最後可得9.20dBi的輻射增益,以及200MHz的頻寬。由於此結構允許擁有較大的機械製作誤差、極低的介質能量損耗以及廉價的製作費,所以必定會在未來點對點的通訊系統上擁有極大的發展。
In this thesis, we reported a four-beam E-plane horn antenna incorporating a wire-based metamaterial. Such a metamaterial is made up of metallic cylinders organized in a two-dimensional square lattice. After properly designing the lattice constant and unit cell pattern, we synthesized a medium having the effective refractive index smaller than unity. Therefore, once waves within the metamaterial were excited, the refractive wave tends to be perpendicular to that of the interface between metamaterial and uniform medium. Based on this concept, a 4-way power divider was design to equally distribute the input power into four different directions. We then guide each of the power into individual E-plane flared opening to radiate a directional beam pattern in each sector. In addition to the theoretical calculation regarding the dispersion- and phase- relation of the two-dimensionally periodic medium, we fabricated this antenna and measured its radiation characteristics including the return loss and far-field pattern. The excellent agreement between the measured and simulated results was obtained. Due to the properties of robust, low-loss, and low-cost, this antenna may have promising application in a point-to-multiple-point radio link system.
中文摘要......................................................................................................................Ⅰ
英文摘要......................................................................................................................Ⅱ
誌謝............................................................................................................................. Ⅳ
目錄..............................................................................................................................Ⅴ
圖錄..............................................................................................................................Ⅶ
表錄..............................................................................................................................Ⅹ
第一章 序論.................................................................................................................1
1.1動機與目的................................................................................................1
第二章 特徵模態分析...................................................................................................3
2.1特徵模態的基本原理與特性....................................................................3
2.1.1特徵模態的模擬與設定..................................................................3
2.1.2比較人工材料與空氣中的相位關係..............................................7
2.1.3週期性邊界條件與對稱邊界條件的比較....................................13
第三章 週期結構參數萃取.......................................................................................14
3.1利用電磁軟體萃取S參數.......................................................................14
3.2利用S數求得等效係數...........................................................................15
3.3運用折射係數與阻抗的關係增加萃取的精準度..................................18
第四章 Marcuvitz結構參數分析與萃取..................................................................21
4.1 Marcuvitz等效電路與公式....................................................................21
4.1.1 Marcuvitz等效電路結構..............................................................21
4.1.2 Marcuvitz等效電路改良..............................................................23
4.2 Marcuvitz等效電路結果與數據............................................................25
第五章 含人工材料之四波束號角天線的設計.......................................................29
5.1天線結構尺寸與照片..............................................................................29
5.2天線S參數模擬與量測結果...................................................................31
5.3天線場型模擬與量測結果......................................................................32
5.4比較天線是否使用人工材料的差別......................................................39
5.5天線電場分析..........................................................................................41
5.6饋入電路的位置安排..............................................................................42
5.7同軸線饋入激發源長度的設計..............................................................43
5.8人工材料週期與天線輻射特性比較......................................................46
5.9由Poynting vector分析人工材料有效面積...........................................49
5.10人工材料商用頻段尺寸........................................................................51
5.11天線應用延伸........................................................................................53
5.11.1人工材料Poynting vector向量分析...........................................53
5.11.2人工材料功率分配器的使用......................................................54
第六章 結論...............................................................................................................56
參考文獻......................................................................................................................57
[1] A. M. Nicolson and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, Nov. 1970.
[2] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, Vol. 65, 195104, 2002.
[3] R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
[4] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608, 2004.
[5] B. -I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, “A study of using metamaterials as antenna,” Progress In Electromagnetics Research, PIER 51, 295-328, 2005.
[6] M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B, Condens. Matter, Vol. 52, 11744-11751, 1995.
[7] H. Y. David Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microw. Theory and Tech., Vol. 44, No. 12, 2688-2695, Dec. 1996.
[8] C. -P. Yu and H. -C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Optics Express, Vol. 12, No. 7, 1397-1408, Apr. 2004.
[9] N. A. Nicorovici and R. C. Mcphedran, “Photonic Band Gaps Noncommuting Limits and the “Acoustic Band”,” Phys. Rev. Lett., Vol. 75, No. 8, 1507, Aug. 1995.
[10] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett., Vol. 89, No. 21, 213902, Nov. 2002.
[11] D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antennas and Propag., Vol. 50, No. 3, 384-390, Mar. 2002.
[12] D. Sievenpiper, and J. Schaffner, “Beam steering microwave reflector based on electrically tunable impedance surface,” Elect. Lett., Vol. 38, No. 21, 1237-1238, 10 Oct. 2002.
[13] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas and Propag., Vol. 51, No. 10, 2713-2722, Oct. 2003.
[14] L. Liang, B. Li, S. H. Liu, C. H. Liang, “A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays,” Progress In Electromagnetics Research, PIER 65, 275-286, 2006.
[15] A. K. Hamid, “Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials,” Progress In Electromagnetics Research, PIER 51 329-341, 2005.
[16] B. Li, B. Wu, C. H. Liang, “Study on high gain circular waveguide array antenna with metamaterial structure,” Progress In Electromagnetics Research, PIER 60, 207-219, 2006.
[17] S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett., Vol. 21, No. 21, 1771-1773, 1996.
[18] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Metallic photonic band-gap materials,” Phys. Rev. B, Vol. 58, No. 16, 10096-10099, 1998.
[19] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, Vol. 62, No. 16, 10696-10705, 2000.

[20] P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Optics Express, Vol. 11, No. 7, 649-661, Apr. 2003.
[21] J. Baker-Jarvis, E. J. Vanzura, and W. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory and Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
[22] N. Marcuvitz, Waveguide handbook, Radiation Laboratory Series, Vol.10, New York: McGraw-Hill, 1951.
[23] R. B. Hwang, “Relations between the reflectance and band structure of 2-D metallodielectric electromagnetic crystals,” IEEE Trans. Antennas and Propag., Vol. 52, No. 6, 1454-1464, Jun. 2004.
[24] P. Russo, R. Rudduck, L. Peters, Jr., “A method for computing E-plane patterns of horn antennas,” IEEE Trans. Antennas and Propag., Vol. 13, No. 2, 219-224, Mar. 1965.
[25] J. Yu, R. Rudduck, L. Peters, Jr., “Comprehensive analysis for E-plane of horn antennas by edge diffraction theory,” IEEE Trans. Antennas and Propag., Vol. 14, No. 2, 138-149, Mar. 1966.
[26] D. R. Rhodes, “An Experimental Investigation of the Radiation Patterns of Electromagnetic Horn Antennas,” Proceedings of the IRE, Vol. 36, No. 9, 1101-1105, Sept. 1984.
[27] E. Jull, “Errors in the predicted gain of pyramidal horns,” IEEE Trans. Antennas and Propag., Vol. 21, No. 1, 25-31, Jan. 1973.
[28] L. S. Warren, A. T. Gary, Antenna Theory and Design, 2nd ed., John Wiley &Sons, Inc., 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top