|
[1] A. M. Nicolson and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, Nov. 1970. [2] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, Vol. 65, 195104, 2002. [3] R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003. [4] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608, 2004. [5] B. -I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, “A study of using metamaterials as antenna,” Progress In Electromagnetics Research, PIER 51, 295-328, 2005. [6] M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B, Condens. Matter, Vol. 52, 11744-11751, 1995. [7] H. Y. David Yang, “Finite difference analysis of 2-D photonic crystals,” IEEE Trans. Microw. Theory and Tech., Vol. 44, No. 12, 2688-2695, Dec. 1996. [8] C. -P. Yu and H. -C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Optics Express, Vol. 12, No. 7, 1397-1408, Apr. 2004. [9] N. A. Nicorovici and R. C. Mcphedran, “Photonic Band Gaps Noncommuting Limits and the “Acoustic Band”,” Phys. Rev. Lett., Vol. 75, No. 8, 1507, Aug. 1995. [10] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett., Vol. 89, No. 21, 213902, Nov. 2002. [11] D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antennas and Propag., Vol. 50, No. 3, 384-390, Mar. 2002. [12] D. Sievenpiper, and J. Schaffner, “Beam steering microwave reflector based on electrically tunable impedance surface,” Elect. Lett., Vol. 38, No. 21, 1237-1238, 10 Oct. 2002. [13] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas and Propag., Vol. 51, No. 10, 2713-2722, Oct. 2003. [14] L. Liang, B. Li, S. H. Liu, C. H. Liang, “A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays,” Progress In Electromagnetics Research, PIER 65, 275-286, 2006. [15] A. K. Hamid, “Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials,” Progress In Electromagnetics Research, PIER 51 329-341, 2005. [16] B. Li, B. Wu, C. H. Liang, “Study on high gain circular waveguide array antenna with metamaterial structure,” Progress In Electromagnetics Research, PIER 60, 207-219, 2006. [17] S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett., Vol. 21, No. 21, 1771-1773, 1996. [18] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Metallic photonic band-gap materials,” Phys. Rev. B, Vol. 58, No. 16, 10096-10099, 1998. [19] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, Vol. 62, No. 16, 10696-10705, 2000.
[20] P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Optics Express, Vol. 11, No. 7, 649-661, Apr. 2003. [21] J. Baker-Jarvis, E. J. Vanzura, and W. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory and Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990. [22] N. Marcuvitz, Waveguide handbook, Radiation Laboratory Series, Vol.10, New York: McGraw-Hill, 1951. [23] R. B. Hwang, “Relations between the reflectance and band structure of 2-D metallodielectric electromagnetic crystals,” IEEE Trans. Antennas and Propag., Vol. 52, No. 6, 1454-1464, Jun. 2004. [24] P. Russo, R. Rudduck, L. Peters, Jr., “A method for computing E-plane patterns of horn antennas,” IEEE Trans. Antennas and Propag., Vol. 13, No. 2, 219-224, Mar. 1965. [25] J. Yu, R. Rudduck, L. Peters, Jr., “Comprehensive analysis for E-plane of horn antennas by edge diffraction theory,” IEEE Trans. Antennas and Propag., Vol. 14, No. 2, 138-149, Mar. 1966. [26] D. R. Rhodes, “An Experimental Investigation of the Radiation Patterns of Electromagnetic Horn Antennas,” Proceedings of the IRE, Vol. 36, No. 9, 1101-1105, Sept. 1984. [27] E. Jull, “Errors in the predicted gain of pyramidal horns,” IEEE Trans. Antennas and Propag., Vol. 21, No. 1, 25-31, Jan. 1973. [28] L. S. Warren, A. T. Gary, Antenna Theory and Design, 2nd ed., John Wiley &Sons, Inc., 1998.
|