跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李吉川
研究生(外文):Chi-Chuan Li
論文名稱:吸收式除濕系統除濕液中添加微量低表面張力溶劑對質傳性能之影響
論文名稱(外文):Effects of the Addition of a Small Amount of Low Surface Tension Solvent into the Working Solution of the Absorption Dehumidification Systems
指導教授:鍾財王鍾財王引用關係
指導教授(外文):Tsair-Wang Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:61
中文關鍵詞:表面張力三乙基乙二醇LiClMarangoni
外文關鍵詞:LiClTEGSurface tensionMarangoniTriethylene glycol
相關次數:
  • 被引用被引用:8
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
添加低表面張力之揮發性有機溶液於在吸收式除濕系統工作溶液三乙基乙二醇以及LiCl水溶液中,強制氣-液界面形成表面張力梯度,因而產生表面流體之擾動現象,稱為Forced Marangoni convection。由於表面張力梯度對於氣-液間質傳性能具有決定性的影響,當系統產生Marangoni convection時,會增加界面擾動的程度,不但可以促進表面更新的效應,亦可帶動液面周圍的空氣,增加氣-液接觸的機會,進而促進質傳性能的提升。本實驗將以上原理應用於吸收式除濕系統當中,藉由在吸收劑內添加低表面張力之醇類,使系統產生Marangoni effect,用來提升除濕系統的效率,系統操作參數包括空氣與液體流量、液體溫度與濃度、進口空氣之溼度等。本實驗將比較不同操作條件下,有無添加醇類系統之除濕效率差異,以及三乙基乙二醇和LiCl溶液添加醇類之性能比較,藉以證明界面擾動現象對系統性能具不可忽略之影響,對建立考慮界面現象之氣-液質傳模式或吸收塔經驗式都具有重要意義。
Adding a low surface tension volatile organic solutions into working solutions of triethylene glycol (TEG) and LiCl solution in a dehumidification system, it will force to form the interfacial disturbance in the gas-liquid interface, which is called Forced Marangoni convection. The surface tension gradient dominates the mass transfer performance between gas-liquid interfaces. When the systems occurring the interface disturbance, it will increase the degree of instability and the rate of surface renewal and cause the flow of air on the liquid surface to increase the gas-liquid contact and its mass transfer performance. This theory will be applied in the absorption dehumidification system to increase the dehumidification efficiency by adding a small amount of low surface tension alcohol to occur the Marangoni effect. The operating parameters include air and liquid flow rate, liquid inlet temperature and concentration, and air inlet humidity. The experiment will find out the differences of the dehumidification efficiency in different operating parameters with and without adding alcohols comparison of the performance between TEG and LiCl solution systems with adding a small amount of alcohol. By using this method, we can prove that there is a great influence of interface disturbance on the systematic performance. It is an important meaning to set up gas-liquid interface mass transfer model or experience model of interfacial phenomenon in the absorption tower.
總目錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………II
總目錄…………………………………………………………………III
圖目錄…………………………………………………………………V
表目錄…………………………………………………………………VII
誌謝…………………………………………………………………VIII

第一章 …………………………………………………………………1
1.1 除濕方法及優缺點…………………………………………………2
1.2 除濕劑的選擇………………………………………………………4
1.3 吸收式除濕系統簡介………………………………………………7
第二章 文獻回顧………………………………………………8
2.1 傳統吸收理論………………………………………………………8
2.2 界面擾動…………………………………………………………12
2.3 表面張力梯度造成之液層流動現象……………………………13
2.4 吸濕液中加入低表面張力揮發性物質對吸收機構之影響....22
第三章 研究方法……………………………………………28
3.1 實驗藥品…………………………………………………………28
3.2 實驗設備…………………………………………………………28
3.3 實驗步驟…………………………………………………………30
3.3.1 Flooding之計算………………………………………………30
3.3.2 吸收塔之操作程序……………………………………………30
第四章 結果與討論…………………………………………39
4.1 醇類吸收劑之除濕性能探討……………………………………39
4.2 鹽類吸收劑之除濕性能探討……………………………………45
第五章 結論…………………………………………………50
符號說明………………………………………………………52
參考文獻………………………………………………………54

附錄 (Appendix)
圖A-1三乙基乙二醇 (TEG) 水溶液蒸氣壓與溫度之關係………60
圖A-2氾濫點與填充塔各物理性質關係 …………………………61














圖目錄
圖1-1 Counter-current之填充塔示意圖………………………………7
圖2-1 雙膜理論表面濃度不連續示意圖……………………………11
圖2-2 MEA水溶液吸收CO2造成之界面擾動………………………15
圖2-3 添加低表面張力之spreading liquid於液面之流動模………16
圖2-4 乙醇於液面揮發所產生之表面對流現象……………………16
圖2-5 高揮發性液膜揮發所造成之對流表面示意圖………………17
圖2-6 高揮發性液膜揮發所造成之孔隙式對流示意圖……………17
圖2-7 在薄液膜底部加熱所造成之對流情形…………….…………18
圖2-8 薄液膜底部加熱時添加鋁粉得到之流動現象………………18
圖 2-9 水平液層添加添加劑之示意圖………………………………24
圖2-10 添加surfactant於吸收劑中所產生之Marangoni effect……24
圖2-11 水吸收CO2之實驗裝置圖……………………………………25
圖2-12 添加低表面張力之吸收系統…………………………………25
圖2-13 LiBr水溶液添加Surfactant後之表面張力變化………………26
圖2-14 產生孔隙式對流之機制………………………………………27
圖3-1 填料之性質……………………………………………………33
圖3-2 TEG之濃度檢量線……………………………………………34
圖3-3 LiCl之濃度檢量線……………………………………………34
圖3-4 實驗裝置圖……………………………………………………35
圖3-5 實驗流程圖……………………………………………………36
圖4-1 氣體流量對水氣移除量之影響………………………………41
圖4-2 液體流量對水氣移除量之影響………………………………41
圖4-3 TEG入口溫度對水氣移除量之影響…………………………42
圖4-4 TEG入口濃度對水氣移除量之影響…………………………42
圖4-5氣體流量對水氣移除量之影響…………………………………46
圖4-6 液體流量對水氣移除量之影響………………………………46
圖4-7 LiCl入口溫度對水氣移除量之影響…………………………47
圖4-8 LiCl入口濃度對水氣移除量之影響…………………………47

















表目錄
表1-1冷凍除濕與化學除濕之優缺點…………………………………3
表1-2吸收式除濕系統之吸收劑優缺點比較…………………………5
表1-3有機醇類及無機鹽類吸收劑之優缺點…………………………6
表2-1界面擾動之分類…………………………………………………15
表2-2質傳過程中之速度分布以及系統產生之Marangoni convection之研究…………………………………………………………19
表2-3文獻中對質傳性能之研究………………………………………20
表2-4 Marangoni效應之相關研究文獻………………………………21
表3-1 LiCl之特性……………………………………………………37
表3-2 LiCl之成分……………………………………………………37
表3-3 TEG之成分分析……..…………………………………………38
表4-1 TEG吸收水氣之實驗數據……………………………………43
表4-2 TEG添加5%乙醇之吸收水氣實驗數據……………………….44
表4-3 LiCl吸收水氣之實驗數據……………………………………48
表4-4 LiCl添加5%乙醇吸收水氣之實驗數據………………………49
蔡志源, 混合溶劑除濕液之熱物性質密度、黏度及蒸氣壓量測
, 中原大學化學工程研究所碩士論文, 2004
【2】羅中銘, 吸收式除濕塔中除濕效率與溶液蒸氣壓之關係研究,中原大學化學工程研究所碩士論文, 1999
【3】陳儷方, 混合溶劑除濕劑之蒸汽壓量測研究, 中原大學化學
工程研究所碩士論文, 2003
【4】林麒峰, 除濕劑新配方之蒸汽壓量測研究,中原大學化學工程
研究所碩士論文, 2002
【5】Ahmed, C. S. K.; Gandhidasan, P.; Al-Farayedhi, A. A.
“Simulation of a Hybrid Liquid Desiccant based Air-Conditioning System”. Applied Thermal Engineering 1997, 17, 125-134
【6】Bakker, C. A. P.; Vlissingen, F. H. Fentener; Beek, W. J. “The Influence of the Driving Force in Liquid-Liquid Extraction-a Study of Mass Transfer with and without Interfacial Turbulence under Well-Defined Condition” Chemical Engineering Science 1967, 22, 1349-1355
【7】Brain, P. L. T.; Vivian, J. E.; Mayr, S. T. “Cellular Convection in Desorbing Surface Tension-Lowering Solutes from Water” Ind. Eng. Chem. Fundam. 1971, 10(1), 75-83
【8】Brain, P. L. T.; Ross, J. R. “The Effect of Gibbs Adsorption on Marangoni Instability in Penetration Mass Transfer” AIChE J. 1972, 18(3), 582-591
【9】Brain, P. L. T.; Smith, K. A. “Influence of Gibbs Adsorption on Oscillatory Marangoni Instability” AIChE J. January 1972, 18(1), 231-233
【10】Buzek, J.; Podkanski J.; Warmuzinski K. “The Enhancement of The Rate of Absorption of CO2 in Amine Solutions Due to The Marangoni Effect” Energy Concers. Mgmt. 1997, Vol. 38, Suppl., pp. S69-S74
【11】Chung, T.-W. “Predictions of Moisture Removal Efficiencies for Packed-Bed Dehumidification System” Gas Separation and Purification 1994, 8(4), 265-268
【12】Chung, T.-W.; Ghosh, Tushar K.; Hinse, Anthony L. “Comparison between Random and Structured Packings for Dehumidification of Air by Lithium Chloride Solutions in a Packed Column and Their Heat and Mass Transfer Correlation” Ind. Eng.Chem. Res. 1996, 35, 192-198
【13】Chung, T.-W.; Wu, H. “Dehumidification of Air by Aqueous Triethylene Glycol Solution in a Spray Tower” Separation Science and Technology 1998, 33(8), 1213-1224
【14】Chung, T.-W., Wu, H. “Comparison between Spray Towers with and without Fin Coils for Air Dehumidification Using Triethylene Glycol Solutions and Development of the Mass-Transfer Correlation” Ind. Eng. Chem. Res. 2000, 39, 2076-2084
【15】Cheng, W.-L.; Kouichi Houda; Chen, Z.-S.; Atsushi Akisawa;
Hu, P.; Takao Kashiwagi “Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr” Applied Thermal Engineering 2004, 24, 281-298
【16】Daiguji, H.; Hihara, E.; Saito T. “Mechanism of Absorption Enhancement by Surfactant” Int. J. Heat Mass Transfer. 1997, Vol. 40, No. 8, pp. 1743-1752
【17】Fumo, N.; Goswami, D. Y. “Study of An Aqueous Lithium Chloride Desiccant System:Air Dehumidification and Desiccant Regeneration” Solar Energy Vol. 72, No. 4, pp. 351–361, 2002
【18】Harriman, L. “Desiccant Cooling and Dehumidification” ASHR-
AE publication, American Society of Heating, Refrigeration and Air Conditioning, Atlanta GA, USA, 1992
【19】Kima, J.; Kangb, Y. T.; Choia, C. K. “Effects of gas phase and additive properties on Marangoni instability for absorption process in a horizontal fluid layer” International Journal of Refrigeration 2004, 27, 140-149
【20】Kinsara, A.; Elsayed, M.; Al-Rabghi, O. “Proposed Energy Efficient Air Conditioning System using Liquid Desiccant” Appl. Thermal Engng. J. 1996, 16, 791-806.
【21】Lazzarin, R. M.; Gasparella, A.; Longo, G. A. “Chemical
Dehumidification by Liquid Desiccants: Theory and
Experiment” International Journal of Refrigeration 1999, 22, 334-347
【22】Lu, Hsin-Hsen; Yang, Yu-Min; Maa, Jer-Ru “Effect of Artificially Provoked Marangoni Convection at a Gas/Liquid Interface on Absorption” Ind. Eng. Chem. Res. 1996, 35, 1921-1928
【23】McCabe, W. L.; Smith, J. S.; Harriott, P. “Unit Operation of
Chemical Engineering” 5thed., Ch. 22, McGraw-Hill: New
York, 1993
【24】Marangoni, C. Ann. Phys. 1871, (Leipzig), 143, 337-354
【25】Nakamura, S.; Hibiya, T.; Kakimoto, K.; Imaishi, N.; Nishizawa, Shin-ichi; Hirata, A.; Mukai, K.; Yoda, Shin-ichi; Morita, T. S. “Temperature Flutuations of the Marangoni Flow in a Liquid Bridge of Molten Silicon under Microgravity on Board the TR-IA-4 Rocket” Journal of Crystal Growth 1998, 186, 85-94
【26】Nepomnyashchy, A. A.; Velarde, M. G.; Colinet, Pierre
“Interfacial Phenomena and Convection”
【27】Patberg, W. B.; Koers, A.; Steenge, W. D. E.; Drinkenburg, A. A.
H. “Effectiveness of Mass Transfer in a Packed Distillation Column in Relation to Surface Tension Gradients” Chemical Engineering Science 1983, 38(6), 917-923
【28】Pellew, A.; Southwell, R. V. “On Maintained Convective Motion in a Fluid Heated from Below” Proc. Roy. Soc. A 1940, 176, 312
【29】Ruckenstein, E.; Smigelschi, O.; Suciu, D. G. “A Steady
Dissolving Drop Method for Studying the Pure Marangoni Effect” Chemical Engineering Science 1970, 25(8), 1249-1254
【30】Smigelschi, O.; Suciu, D. G.; Ruckenstein, E. “Absorption under the Action of Artificial Provoked Marangoni Effect” Chemical Engineering Science 1969, 24, 1227-1234
【31】Suciu, D. G.; Smigelschi, O.; Ruckenstein, E. “The Spreading of Liquid on Liquid”, Journal of Colloid and Interface Science 1970, 33(4), 520-528
【32】Takasu, T.; Itou, H.; Nakamura, T.; Toguri, J. M. “Observation
and Calculation of Marangoni Convection Induced Thermally in a Molten Salt” Canadian Metallurgical Quarierly 1998, 37(3-4), 285-292
【33】Ullah, M. R.; Kerrleborough, C. F.; Gandhidasan, P.
“Effectiveness of Moisture Removal for an Adiabatic Counterflow Packed Tower Absorber Operating with CaCl2-Air Contact System” ASME J. Solar Energy Eng. 1988, 110, 98-101
【34】Vazquez, G.; Antorrena, G.; Navaza, J. M.; Sabtos, V. “Effective Interfacial Area in the Presence of Induced Turbulence” International Chemical Engineering 1994, 34(2), 247-254
【35】Warmuzinski, K.; Buzek, J.; Podkanski J. “Marangoni Instability during Absorption Accompanied by Chemical Reaction” The Chemical Engineering Journal 1995, 58, 151-160
【36】Wu, H.; Chung, T-W; Lai, M.-H. “Effect of Marangoni
Convection on the Mass Transfer Performance in a
Packed-Bed Absorber” Ind. Eng. Chem. Res. 2001, 40, 885-891
【37】Yamamoto, M.; Torii, K. “Evaluation of the Onset of Oscillatory Thermomocapillary Convection in Liquid Bridge with Empirical Correlations in terms of a Modified Marangoni Number” Journal of Crystal Growth 1999, 197, 967-972
【38】Zhang, X.; Wang, J.; Zhang C.-F.; Yang, Y.-H.; Xu, J.-J.
“Absorption Rate into a MDEA Aqueous Solution Blended with
Piperazine under a High CO2 Partial Pressure” Ind. Eng. Chem. Res. 2003, 42, 118-122
【39】Zuiderweg, F. J.; Harmens, A. “The Influence of Surface phenomena on the Performance of Distillation Columns” Chemical Engineering Science 1958, 9, 89-108
【40】Zhang, N. and Chao, D. F. “Mechanism of Convection Instability in Thin Liquid Layers Induced by Evaporation” Int. Comm. Heat Mass Transfer 1999, vol. 26, No. 8, pp. 1069-1080
【41】Zuiderweg, F. J. “Marangoni Effect in Distillation of Alcohol
-Water Mixtures” Chem. Eng. Res. Des. Novermber 1983, 61, 388-390
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top