|
[1] http://www.energybandgap.com/power-generation/efficiency-of-solar-panels/ [2] P. Jackson*, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt: Res. Appl, vol. 19, pp. 894-897, 2011. [3] T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen and Y. Zhu, and D. B. Mitzi, “Beyond 11% efficiency: characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells,” Adv. Energy Mater., vol. 3, pp. 34-38, 2013. [4] P. T. Huang, “Investigation of Zinc-sulfide buffer layer fabricated by RF Sputter for CIAS solar cell application,” Master thesis, National Tsing Hua University, July 2012. [5] A. Ennaoui, S. Siebentritt, M.Ch. Lux-Steiner, W. Riedl and F. Karg, “High-e efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers,” Solar Energy Materials & Solar Cells, vol.67, pp.31-40, 2001. [6] R. Mikami, H. Miyazaki, T. Abe, A. Yamada and M. Konagai, “Chemical bath deposited (CBD)-ZnO buffer layer for CIGS solar cells,” in Pro. 3rd World Conference of Photovoltaic Energy Conversion, Osaka, Japan, 2003, pp. 519. [7] D. Hariskos, M. Ruckh, U. Rqhle, T. Walter, H.W. Schock, J. Hedstrfm and L. Stolt, “A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells,” Solar Energy Materials and Solar Cells, vol. 41/42, pp. 345-353, 1996. [8] M. Konagai, Y. Ohtake, and T. Okamoto, “Development of Cu(InGa)Se2 thin film solar cells with Cd-free buffer layers,” Mater. Res. Soc. Symp. Proc., vol. 426, pp.153, 1996. [9] Y. Tokita, S. Chaisitsak, H. Miyazaki, R. Mikami, A. Yamada, M. Konagai, “Novel In(OH)3:Zn2+ buffer layer for Cu(InGa)Se2 based solar cells,” Jpn. J. Appl. Phys., vol. 41, pp.7407, 2002. [10] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering chapter 3, Page 62. [11] J. Nelson, The Physics of solar cells. London: imperial College Press, 2003. [12] H. Flammersberger, “Experimental study of Cu2ZnSnS4 thin films for solar cells,” PhD thesis, Uppsala universitet, December 2010. [13] Photovoltaics CDROM Christiana Honsberg and Stuart Bowden [14] Sinton RA, Cuevas A. Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photo conductance data. 1996, 69: 2510-2512. [15] D. Hariskos, S. Spiering and M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules,” Thin Solid Films, vol.480-481, pp.99-109, 2005. [16] G. B. Dubrovski, “Crystal structure and electronic spectrum of SnS2,” Physics of The Solid State, vol.40, pp.1557-1562, 1998. [17] S. M. Pawar, B. S. Pawar, J. H. Kim, Oh-Shim Joo, and C. D. Lokhande, “Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films,” Current Applied Physics, vol.11, pp.117-161, 2011. [18] P. O’Brien and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS,” J. Mater. Chem.,, vol.8, pp.2309-2314, 1998. [19] K.T.R. Reddy, G. Sreedevi, K. Ramya and R.W. Miles, “Physical properties of nano-crystalline SnS2 layers grown by chemical bath deposition,” Energy Procedia, vol. 15, pp. 340-346, 2012. [20] S. Liu, X. Yin, Q. Hao, M. Zhang, L. Li, L. Chen, Q. Li, Y. Wang, and T. Wang, “Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery,” Materials Letters, vol. 64, pp. 2350-2353, 2010. [21] L. L. Cheng, M. H. Liu, S. C. Wang, M. X. Wang, G. D. Wang, Q. Y. Zhou and Z. Q. Chen, “Nano-flower and nano-wall SnS2 films fabricated with controllable shape and size by the PECVD method,” Semicond. Sci. Technol., vol. 28, pp. 1-8, 2013. [22] J Li, Y. C. Zhang, and M. Zhang, “Preparation of SnS2 thin films by chemical bath deposition,” Materials Science Forum, vols. 663-665, pp. 104-107, 2011. [23] JCB Malaquias, “Cu2ZnSnS4 thin films for PV: Comparison of two growth methods,” PhD thesis, Universidade de Aveiro, 2010. [24] http://en.wikipedia.org/wiki/Sputter_deposition [25] http://en.wikipedia.org/wiki/Scanning_electron_microscope [26] James D. Plummer, Michael D. Deal and Peter B. Griffin, Silicon VLSI Technology, Chapter 4, p.174-175, Prentice Hall (2000). [27] http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy [28] http://en.wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy [29] T.H. Patel, “Influence of Deposition Time on Structural and Optical Properties of Chemically Deposited SnS Thin Films,” The Open Surface Science Journal, vol. 4, pp. 6-13, 2012. [30] D. Heiman, “Photoluminescence Spectroscopy,” Physics of Waves and Optics, 2004. [31] http://en.wikipedia.org/wiki/Raman_spectroscopy [32] Y. Kamikawa-Shimizu, S. Shimada, M. Watanabe, A. Yamada, K. Sakurai, S. Ishizuka, H. Komaki, K. Matsubara, H. Shibata, H. Tampo, K. Maejima, and S. Niki, “Effects of Mo back contact thickness on the properties of CIGS solar cells,” Phys. Status Solidi A 206, no. 5, pp.1063 –1066, 2009. [33] K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its Effect on Cu(In,Ga)Se 2 Solar Cel,” Journal of the Korean Physical Society, Vol. 45, No. 4, pp. 1114∼1118, Oct. 2004. [34] A. Akkari, C. Guasch, N. Kamoun-Turki, “Chemically deposited tin sulphide,” Journal of Alloys and Compounds, vol. 490, pp. 180-183, 2010. [35] S. K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, and S. Chaudhuri “Optical properties of nanocrystalline SnS2 thin films,” Materials Research Bulletin, vol. 42, pp. 576-583, 2007. [36] Y. C. Zhang, Z. N. Du, S. Y. Li, and M. Zhang, “Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2•2H2O and S powders,” Applied Catalysis B: Environmental, vol. 95, pp. 153-159, 2010. [37] J. Chao, Z. Xie, X. Duan, Y. Dong, Z. Wang, J. Xu, Bo L., B. Shan, J. Ye, and D. Chen and G. Shen, “Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx (x=1,2) architectures,” CrystEngComm, vol. 14, pp. 3163-3168, 2012.
|