跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王善立
研究生(外文):Shan-Li Wang
論文名稱:探討酵母菌Htl1p與RSC複合物之關係
論文名稱(外文):study of the relationship between yeast Htl1p and RSC complex
指導教授:鄭明媛
指導教授(外文):Ming-Yuan Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:遺傳學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:酵母菌
外文關鍵詞:yeastHTL1RSC complexCHA1
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
HTL1是一個和RSC(remodel the structure of chromatin)複合物具有密切關係的酵母菌基因,部份RSC複合物成員和HTL1具有遺傳交互關係,利用抗原決定基標記HTL1 基因的菌株,我們發現HTL1和RSC、STH1具有共同免疫沉澱關係而且HTL1作用位置在細胞核。另外,最近的文獻指出,STH1和RSC8可控制一個代謝相關基因-CHA1的表現,在非誘發狀態下,sth1或rsc8突變株會大量表現CHA1基因,所以推測RSC複合物在非誘發狀態時會抑制CHA1的表現。由於這被認為是RSC複合物可能直接作用的基因,而且其真正作用機制並未完全被了解,所以我們嘗試探討HTL1是否也會調控CHA1基因的表現。利用htl1基因剔除株的研究發現,非誘發狀態下,htl1基因剔除株的CHA1轉錄活性明顯低於野生型菌株,而htl1基因剔除株仍然可以發生CHA1基因誘發,所以我們推測HTL1可能參與CHA1基因表現調控且突變株的效果與sth1或rsc8不同。此外我們也發現,山梨醇(sorbitol)可以部分拯救htl1基因剔除株高溫敏感,而且htl1基因剔除株具有對calcofluor white敏感的細胞壁完整性缺陷的特徵。
Yeast Htl1p was found to be functionally related to RSC complex by genetic analysis. In addition to the association of Htl1p and Rsc8p, other components may also interact with Htl1p. Using HA tagged strain; we show that Sth1p and Rsc8p can interact with Htl1p by co-immunoprecipitation. By immunofluorescent staining, Htl1p was found in the nucleus. In recent report, STH1 and RSC8 have been shown to be required for proper transcriptional regulation and nucleosome positioning in CHA1 promoter. Here we show that the htl1 disruption strain prolonged the repression state in the absence of serine. In the presence of serine, the de-repression of the CHA1 expression is similar to that of wild-type yeast. The observation that htl1 disruption strain was demonstrated to be sensitive to calcofluor white dye which binds to chitin of the cell wall and the temperature sensitive phenotype of htl1 mutant can be partially rescued by sorbitol suggests that HTL1 involved in the mutation of the cell wall integrity.
中文摘要---------------------------------------------------------------------------------------- 1
英文摘要---------------------------------------------------------------------------------------- 2
緒論---------------------------------------------------------------------------------------------- 3
實驗材料---------------------------------------------------------------------------------------- 11
實驗方法---------------------------------------------------------------------------------------- 14
實驗結果---------------------------------------------------------------------------------------- 23
討論-- ------------------------------------------------------------------------------------------- 28
參考文獻---------------------------------------------------------------------------------------- 33
結果圖表---------------------------------------------------------------------------------------- 38
1. 張敏麗 1994 分離細胞溶質內蛋白質摺合機制失效的突變種。陽明大學,遺傳學研究所碩士班論文。
2. 李朝欽 2000 探討酵母菌Rsc8p與Htl1p之關係。陽明大學,遺傳學研究所碩士班論文。
3. 蔡艾莉 2002 探討酵母菌Htl1p與RSC複合物的關係。陽明大學,遺傳學研究所碩士班論文。
4. 林育如 1998 利用合成性致死方法找出CAS2的相關基因。陽明大學,遺傳學研究所碩士班論文。
5. Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. D. Kornberg. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249-1260.
6. Becker, P. B., and Horz, W. 2002. ATP-dependent chromatin remodeling. Annu. Rev. Biochem. 71: 247-273.
7. Berger, S. L. 2001. Molecular biology. The histone modification circus. Scince 292: 64-65.
8. Roth, S. Y., Denu, J. M., and Allis, C. D. 2001. Histone acetyltransferase. Annu. Rev. Biochem. 70: 80-129.
9. Owen, D. J., Ornaghi, P., Yang, J. C., Lowe, N., Evans, P. R., Ballario, P., Neuhaus, D., Filetic, P., and Traver, A. A. 2000. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19: 6141-6149.
10. Boyer, L. A., Langer, M. R., Crowley, S. T., Denu, J. M., and Peterson, C. L. 2002. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol. Cell. 10: 935-942.
11. Lemmon, M. A., Ferguson, K. M., and Schlessinger, J. 1996. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85: 621-624.
12. Eissenberg, J. C. 2001. Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene. 275: 19-29.
13. Narlikar, G. J., Fan, H., and Kindston, R. E. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475-487.
14. Langst, G., and Becker, P. B. 2001. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factor. J. Cell Sci. 114: 2561-2568.
15. Aalf, J. D., Narlikar, G. J. , and Kingston, R. E. 2001. Functional differences between the human ATP-dependent nucleosome remodeling protein BRG1 and SNF2H. 2001. J. Biol. Chem. 276: 34270-34278.
16. Brehm, A., Langst, G., Kehle, J., Clapier, C. R., Imhof, A., Eberharter, A., Muller, J., and Becker, P. B. 2000. dMi-2 and ISWI chromatin remodeling factors have distinct nucleosome binding and mobilization properties. EMBO J. 19: 4332-4341.
17. Havas, K., Flaus, A., Phelan, M., Kingston, R., Wade, P. A., Lilley, D. M., and Owen-Hughes, T. 2000. Generation of superhelical torsion by ATP-dependent chromatin remodeling factor. Cell 103: 1133-1142.
18. Kingston, R. E., and Narlikar, G. J. 1999. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13: 2339-2352.
19. Martens, Joseph A., and Fred Winston. 2003. Rescent advances in understanding chromatin remodeling by Swi/Snf complex. Cur. Opin. in Gene. Dev. 13: 136-142.
20. Ito, T., Levenstein, M. E., Fyodorov, D. V., Kutach, A. K., Kobayashi, R., and Kadonaga, J. T. 1999. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13: 1529-1539.
21. Fryer, C. J., and Archer, T. K. 1998. Chromatin remodeling by the glucocorticoid receptor requires the BRG1 complex. Nature 393: 88-91.
22. Wang, S., Zhang, B., Faller, D. V. 2002. Prohibitin requires Brg-1 and Brm for the repression of E2F and Cell growth. EMBO J. 21: 3019-3023.
23. Nielsen, A. L., Sanchez, C., Ichinose, H., Cervino, M., Lerouge, T., Chambon, P., Losson, R. 2002. Selective interaction between the chromatin-remodeling factor BGR1 and the heterochromatin-associated protein HP1alpha. EMBO J. 21: 5797-5806.
24. Cao, Y., Cairns, B. R., Kornberg, R. D., and Lauernt, B. C. 1997. Sfh1p, a componebt of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17: 3323-3334.
25. Du, J., I Nasir, R., Benton, B. K., Kladde, M. P., and Laurent, B. C. 1998. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interaction with histones and chromatin-associated protein. Genetics 150: 987-1005.
26. Tsuchiya, E., Hosotani, T., and Miyakawa, T. 1998. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromere. Nucleic acid research 26: 3286-3292.
27. Angus-Hill, M. L., Schlichter, A., Robert, D., Erdjument-Bromage, H., Tempst, P., and Cairns, B. R. 2001. An Rsc3/Rsc30 zinc cluster dimmer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol. Cell 7: 741-751.
28. Lorch, Y., Zhang, M., and Kornberg, R. D. 2001. RSC unravels the nucleosome. Molecular Cell 7: 89-95.
29. Asturias, F. J., Chung, W. H., Kornberg, R. D., and Lorch, Y. 2002. Structural analysis of the RSC chromati-remodeling complex. P.N.A.S. 99: 13477-13480.
30. Ng, H. H., Robert, F., Young, R. A., and Struhl, K. 2002. Gonome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 16: 806-819.
31. Damelin, M., Simon, I., Moy, T. I., Wilson, B., Komili, S., Tempst, P., Roth, F. P., Young, R. A., Cairns, B. R., and Silver, P. A. 2002. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in reponse to stress. Molecular cell 9: 563-573.
32. Chai, B., Hsu, T., Du, J., and Laurent, B. C. 2002. Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161: 575-584.
33. 黃姿雯 2000 功能性分析酵母菌SHL1基因。陽明大學,遺傳學研究所碩士班論文。
34. 楊孟鈴 2001 功能性分析酵母菌SHL1基因。陽明大學,生命科學系學士論文。
35. Romos,F., and Wiame, J.-M. 1982. Occurrence of a catabolic L-serine(L-threonine) deaminase in Saccharomyces cerevisiae. Eur. J. Biochem. 123: 571-576.
36. Jens, G., Petersen, L., Morten, C., Kielland-Brandt, T., Tillgen, N., Bornaes, C., and Holmberg, S. 1988. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119: 527-534.
37. Moreira, M. A., and Holmberg, S. 1999. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 18: 2836-2844.
38. Lanzuolo, C., Ederle, S., Pollice, A., Russo, F., Storlazzi, A., and Pulitzer, J. F. 2001. The HTL1 gene(YCR020W-b) of Saccharomyces cerevisiae is necessary for growth at 37℃, and for the conservation of chromosome stability and fertility. Yeast 18: 1317-1330.
39. Romeo, M. J., Angus-Hill, M. L., Sobering, A. K., Kamada, Y., Cairns, B. R., and Levin, D. E. 2002. HTL1 encodes a novel factor that interacts with the RSC chromatin remodeling complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 22: 8165-8174.
40. Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth. K., and Schiebel, E. 1999. Epitope tagging of yeast gene using a PCR-based strategy: more tags and improver practical routines. Yeast 15: 963-972.
41. Carlson, M., and Botstein, D. 1982. Two differentially regulated mRNA with different 5’ ends encode secreted and intracellular forms of yeast invertase. Cell 28: 145-154.
42.Schagger, H., and Von, J. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379
43. Lu, YM., Lin, YR., Hsao YS., Li, CC., Cheng, MY. 2003. Dissecting the pet18 mutation in Saccharomyces cervisiae: HTL1encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol. Genet. Genomics 269: 321-330.
44. Kaeberlein, M., Guarente, L. 2002. Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics 160: 83-95.
45. 陸耀明 1997 酵母菌突變株cas2之分子遺傳特性研究陽明大學,遺傳學研究所碩士班論文。
46. Kolodner, R. D., Putanam, C. D., and Myung, K. 2002. Maintenance of the genome stability in Saccharomyces cerevisiae. Science 297: 552-557.
47. Schmidt, A., Hall, MN., and Koller, A. 1994. Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol. Cell. Biol. 10: 6597-6606.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top