|
Hinkley, D.V. (1970). Inference about a change point in a sequence of random variables. Biometrika 57 41-58.
J.Fan and I.Gijbels. (1996). Local Polynomial Modelling and Its Applications. Chapman&Hall, London.
Loader, C.R. (1994). Change point estimation using nonparametric regression. AT&T Bell Laboratories.
Müller, H.G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics 20 737-761.
Nason, G.P.and Silverman, B.W. (1994). The discrete wavelet transform in S. J.Comput.Graph.Statist. 3 163-191.
Park, C.W., and Kim, W.C. (2004). Estimation of a regression function with a sharp change point using boundary wavelets. Statistics and Probability Letters. 66 435-448.
Qiu, P. (1991). Estimation of a kind of jump regression functions. System Science and Mathematical Sciences 4 1-13.
Qiu, P. (1994). Estimation of the number of jumps of the jump regression functions. Communications in Statistics-Theory and Methods 23 2141-2155.
Qiu, P., Asano, Chi., and Li, X. (1991). Estimation of jump regression functions. Bulletin of Informatics and Cybernetics 24 197-212.
Qiu, P., and Yandell, B. (1998). A local polynomial jump detection algorithm in nonparametric regression. Technometrics 40(2) 141-152.
Qiu, P. (2003). A jump-preserving curve fitting procedure based on local piecewise-linear kernel estimation. Journal of Nonparametric Statistics 15 437-453.
Raimondo, M. (1998). Minimax estimation of sharp change points. The Annals of Statistics 26 1379-1397.
Simonoff, J.S. (1996). Smoothing Methods in Statistics. Springer-Verlag, New York.
Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82 385-397.
Wu, J.S., and Chu, C.K. (1993). Kernel type estimators of jump points and values of a regression function. The Annals of Statistics 21 1545-1566.
Yin, Y.Q. (1988). Detecting of the number, locations and magnitudes of jumps. Communications in Statistics-Stochastic Models 4 445-455.
|