跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施孟光
研究生(外文):Meng-Kuang Shih
論文名稱:電腦模擬融入論證教學對九年級學生論證能力、科學推理能力與概念學習影響之行動研究
論文名稱(外文):Integrating Computer Simulation in Argumentation: An Action Research of 9th Grade Science Classroom
指導教授:李文瑜李文瑜引用關係
指導教授(外文):Silvia Wen-Yu Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:194
中文關鍵詞:論證教學論證能力科學推理能力電腦模擬
外文關鍵詞:argumentationscientific reasoningcomputer simulation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目的在於瞭解電腦模擬融入論證教學,對於國中階段的學習者論證能力、科學推理能力與概念學習的影響為何。本研究採用行動研究法,於二個學期內,針對研究對象36位國中九年級學生(18位女生,18位男生)進行二次教學循環,每次教學循環過程約2至3週,期間間隔約4至6週。
此電腦模擬融入論證教學,主要是使用電腦模擬軟體來進行實驗操作,讓學習者熟悉假設推論論證的步驟,並且培養自我的論證能力與科學推理能力,而藉此對科學學習概念有更完整的瞭解,以提升自我學習成效。研究中主要使用的工具為自編論證試題、Lawson課室科學推理能力測驗,以及科學概念成就試題三項,於每次教學循環開始及結束時進行施測。施測所得的量化數據資料分別採用成對樣本t檢定與重複量數分析,以瞭解學習者論證能力、科學推理能力與科學概念學習的變化情形,並依據課室錄影、教學改進晤談與論證學習單做為質性資料,協助詮釋量化資料的分析結果。
研究結果顯示,實施電腦模擬融入論證教學,能促進學習者發展論證能力、科學推理能力及科學概念學習。經過二次論證教學過程,學習者在「提出假設」、「變因選擇」、「提出結論」這三項論證能力,與整體論證能力的表現有顯著進步;而學習者科學推理能力中的「控制變因」能力,也於每次教學循環後有顯著進步;另外,於學習成效測驗方面,雖然第一循環的結果未達顯著差異,但經教學改進後的第二循環有顯著進步,表示於論證教學活動中搭配完整的觀點整理,將能協助進行完整的科學概念學習。最後,本研究針對電腦融入論證教學實施方式與未來相關研究的設計提出建議。

This study integrated computer simulation into hypothetico-deductive argumentation, with an intention to promote students’argumentation skills, scientific reasoning ability, and conception of science. Adopting the form of action research, the study was implemented in a 9th grade science classroom, with thirty-six students in total, evenly composed of boys and girls. The study included two teaching cycles. Each teaching cycle lasted for half a month, with an interval of one and a half month between each other.
Throughout the two teaching cycles, the researcher collected classroom video data, field notes and teaching reflections, and students’ interview data. This study adopts three instruments: argumentation tests, Lawson's Classroom Test of Scientific Reasoning(LCTSR) and achievement tests of scientific concepts. These instruments were used both in the beginning and the end of each teaching cycle. The data were analyzed by t-test and repeated measures analysis to understand changes in students’ argumentation, scientific reasoning and scientific conception. In addition, the analysis includes qualitative data, such as interviews of teaching improvement and learning sheets on argumentation, for triangulation purposes.
This study shows that the integration of computer simulation in argumentation effectively assists developing students’ argumentation, scientific reasoning and science conception. In the parts of “hypothesis generating,” “variables choosing,” and “conclusion making,” the data reveal significant differences. The changes of students' scientific reasoning ability, controlling of variables, also reveal significant differences between pretests and posttests. It means the integration of computer simulation in argumentation helped with developing students' ability of controlling of variables. The study also showed significant improvements in science concepts during the second teaching cycle. At the end, this research study provides suggestions for teaching of argumentation with computer simulation and suggestions for future studies.

目錄次
中文摘要..................................................I
英文摘要.................................................II
目次....................................................III
表次......................................................V
圖次....................................................VII
附錄次...................................................IX
目次
第一章 緒論
第一節 研究背景與動機.......................................1
第二節 研究目的與待答問題...................................4
第三節 名詞釋義............................................5
第四節 研究限制............................................7
第二章 文獻探討
第一節 論證................................................8
第二節 電腦模擬...........................................28
第三節 科學推理能力........................................35
第三章 研究方法
第一節 研究者背景與理念....................................42
第二節 研究對象與情境......................................43
第三節 研究規劃與流程......................................44
第四節 研究與教學活動設計..................................47
第五節 資料收集與分析......................................58
第四章 研究結果與討論
第一節 實施教學所遭遇到之困難與解決策略......................64
第二節 學習者論證能力的變化................................97
第三節 電腦模擬融入論證教學對學習者科學推理能力影響之分析......115
第四節 電腦模擬融入論證教學對於學習者科學概念學習影響之分析....119
第五章 討論與教學建議
第一節 研究結論..........................................123
第二節 教學反思..........................................127
第三節 建議與未來研究方向.................................129
參考文獻
中文部份................................................131
英文部分................................................133

表次
表2-1-1 科學論證中概念與認識論的品質測量要求................13
表2-1-2 論證教學於應用科學上的實徵性研究整理................22
表3-4-1 各循環論證試題施測與設計對照說明...................48
表3-4-2 第一循環科學概念成就測驗「學習概念」與「題號」對應表..51
表3-4-3 第二循環科學概念成就測驗「學習概念」與「題號」對應表..51
表3-5-1 待答問題與研究工具對應表..........................58
表3-5-2 完整LCTSR試題題號與科學推理技能對應表..............59
表3-5-3 質性資料編號表...................................60
表3-5-4 論證教學學習單與自編論證試題評分依據................61
表4-1-1 「提出假設」的評分修改對照表........................69
表4-1-2 「變因選擇」的評分修改對照表........................71
表4-1-3 「實驗設計」的評分修改對照表........................71
表4-1-4 「預測結果」的評分修改對照表........................73
表4-1-5 「觀察實驗結果」的評分修改對照表....................74
表4-1-6 「提出結論」的評分修改對照表........................79
表4-2-1 第一次教學循環自編論證試題前後測成對樣本t檢定摘要表..97
表4-2-2 第二次教學循環自編論證試題前後測成對樣本t檢定摘要表..97
表4-2-3 「提出假設」的論證能力相依樣本單因子變異數分析摘要表...99
表4-2-4 「提出假設」論證能力分數平均數成對比較表.............99
表4-2-5 「變因選擇」的論證能力相依樣本單因子變異數分析摘要表..100
表4-2-6 「變因選擇」論證能力分數平均數成對比較表............100
表4-2-7 「實驗設計」的論證能力相依樣本單因子變異數分析摘要表..101
表4-2-8 「實驗設計」論證能力分數平均數成對比較表............101
表4-2-9 「預測結果」的論證能力相依樣本單因子變異數分析摘要表.102
表4-2-10 「預測結果」論證能力分數平均數成對比較表...........102
表4-2-11 「提出結論」的論證能力相依樣本單因子變異數分析摘要表.103
表4-2-12 「提出結論」論證能力分數平均數成對比較表...........103
表4-2-13 總論證能力相依樣本單因子變異數分析摘要表..........104
表4-2-14 總論證能力分數平均數成對比較表...................104
表4-3-1 第一循環LCTSR能力與題號對照及分數說明.............115
表4-3-2 第一次教學循環科學推理能力前後測成對樣本t檢定摘要表.115
表4-3-3 第二循環LCTSR能力與題號對照及分數說明.............117
表4-3-4 第二次教學循環科學推理能力前後測成對樣本t檢定摘要表.117
表4-3-5 電腦模擬融入論證教學前後科學推理能力成對樣本t檢定摘要表..117
表4-4-1 二次教學循環學習成就測驗前後測成對樣本t檢定摘要表....119
表4-4-2 第一循環學習成就測驗各科學學習概念題數及分數說明.....120
表4-4-3 第一循環學習成就測驗各科學學習概念前後測成對樣本t檢定摘要表......................................................120
表4-4-4 第二循環學習成就測驗各科學學習概念題數及分數說明.....121
表4-4-5 第二循環學習成就測驗各科學學習概念前後測成對樣本t檢定摘要表......................................................121

圖次
圖2-1-1 Toulmin的論證架構簡圖.............................10
圖2-1-2 Toulmin的論證架構關聯性...........................11
圖2-1-3 Lawson的假設預測性論證............................15
圖2-1-4 單一因果理論示意圖................................19
圖2-1-5 多重因果理論示意圖................................20
圖2-1-6 論證在科學學習的貢獻示意圖.........................26
圖2-3-1 科學理解能力、科學學習成效與科學概念學習之關係圖......38
圖3-0-1 行動研究螺旋示意圖................................41
圖3-3-1 研究流程圖.......................................46
圖3-4-1 教學位置配置圖...................................53
圖3-4-2 模擬軟體「能量滑板競技場」2.08版...................54
圖3-4-3 模擬軟體「電路組裝套件(直流和交流)」3.20版..........55
圖4-1-1 電腦模擬軟體「單擺實驗室2.03版」操作介面............65
圖4-1-2 預備實驗教學學習單................................66
圖4-1-3 自編論證試題截圖..................................70
圖4-1-4 自編論證試題截圖..................................72
圖4-1-5 自編論證試題截圖..................................74
圖4-1-6 學習者B-37和A-03第一循環實驗數據整理及截圖..........77
圖4-1-7 學習者B-27和A-39第一循環實驗數據整理及截圖..........78
圖4-1-8 自編論證試題截圖..................................80
圖4-1-9 電腦模擬軟體「電路組裝套件(直流和交流)3.20版」操作截圖..90
圖4-1-10 學習者A-35和A-08的實驗裝置整理與實驗操作截圖........94
圖4-2-1 自編論證試題前後測截圖...........................105
圖4-2-2 自編論證試題前後測截圖...........................106
圖4-2-3 自編論證試題前後測截圖...........................107
圖4-2-4 第二循環自編論證試題前後測截圖....................110
圖4-2-5 第二循環自編論證試題後測截圖......................112
圖4-4-1 假設觀點整理的截圖...............................121

附錄次
附錄一、第一循環自編論證試題:【能量守恆】進階活動練習........141
附錄二、第二循環自編論證試題:【電學】進階活動練習...........143
附錄三、Lawson課室科學推理能力測驗【24題選擇題版】..........145
附錄四、Lawson課室科學推理能力測驗【12題選擇題版】..........153
附錄五、科學概念成就試題:【動能、位能與能量守恆】試卷........158
附錄六、科學概念成就試題:【電功率與電流熱效應試卷】試卷......159
附錄七、「教學活動改進」晤談大綱...........................160
附錄八、「教學反思日誌」格式...............................161
附錄九、「能量滑板競技場」2.08版操作介紹....................162
附錄十、「電路組裝套件(直流和交流)」3.20版操作介紹..........163
附錄十一、論證教學活動學習單(一):「能量守恆模擬實驗」學習單A版、B版......................................................165
附錄十二、論證教學活動學習單(二):「電功率模擬實驗」學習單A版、B版.......................................................177
附錄十三、第一循環教學活動流程(第一節課)....................186
附錄十四、第一循環教學活動流程(第二節課)....................187
附錄十五、第一循環教學活動流程(第三節課)....................188
附錄十六、第一循環教學活動流程(第四節課)....................189
附錄十七、第一循環教學活動流程(第五節課)....................190
附錄十八、第二循環教學活動流程(第一節課,於教室中進行)........191
附錄十九、第二循環教學活動流程(第二節課,於電腦教室中進行)....192
附錄二十、第二循環教學活動流程(第三節課,於電腦教室中進行)....193
附錄二十一、第二循環教學活動流程(第四節課,於教室中進行)......194


參考文獻
中文部份
朱錦鳳(2008)。教學電腦模擬的必備要件及注意事項。教學科技與媒體,31,49-53。
吳坤璋、吳裕益、黃台珠(2006)。以結構方程模式檢驗影響國小學生對科學的態度之理論模式。師大學報,51(2),83-106。
李光烈、劉嘉茹、江新合(2010)。模型化活動模組對國小學童科學推理能力之促進效果。教育心理學報,41(4),751-772。
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊,18(3),177-203。
李錦坤、佘曉清(2005)。網路化科學推理學習對國小學生燃燒概念重建與推理能力提昇之影響(未出版之碩士論文)。國立交通大學,新竹市。
李靜、宋立軍、張大松(1994)。科學思維的推理藝術。新北市:淑馨出版社。
林志能、洪振方(2008)。論證模式分析及其評量要素。科學教育月刊,312,2-18。
林郁芬(2011)。空間能力、先備知識與表徵順序對七年級概念理解之影響:以人體呼吸運動單元為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
洪振方、謝甫宜(2010)。科學學習成效理論模式的驗證與分析。教育與心理研究,33(3),47-76。
張巨青、吳寅華(1994)。邏輯與歷史:現代科學方法論的嬗變。新北市:淑馨出版社。
張漢宜(2007)。模擬在幼兒自然教材教法課程的應用。幼兒保育論壇,(2),200-215。
陳文正、古智雄、許瑛玿、楊文金(2011)。概念卡通論證教學促進學童論證能力之研究。科學教育學刊,19(1),69-99。
陳盈吉(2003)。探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子概念為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
曾永祥、許瑛玿(2006)。線上課程對高二學生四季成因概念學習的影響。科學教育學刊,14(3),257-282。
黃柏鴻、林樹聲 (2007)。論證教學相關實證性研究之回顧與省思。科學教育,302,5-20。
黃翎斐、胡瑞萍(2006)。論證與科學教育的理論和實務。科學教育月刊,292,15-28。
黃福坤(2006)。透過物理模擬動畫進行物理教學與學習-介紹簡易模擬動化設計環境Easy Java Simulation。物理雙月刊,28(3),536-543。
靳知勤、楊惟程、段曉林(2009)。國小學童的非形式推理之研究-以生物複製議題之引導式論證為例。課程與教學季刊,13(1),209-232。
蔡俊彥、黃台珠、楊錦潭(2008)。國小學童網路論證能力及科學概念學習之研究。科學教育學刊,16(2),171-192。
謝甫宜(2010)。科學遊戲本位教學模式對於學生科學學習成效之影響與分析(未出版之碩士論文)。國立高雄師範大學,高雄市。
魏立欣(譯)(2004)。教育科技融入教學(原作者:M. D. Roblyer)。臺北市:高等教育文化。(原著出版年:2004)

英文部分
American Association for the Advancement of Science, Project 2061. (2009). Benchmarks for Science Literacy. Retrieved from http://www.project2061.org/publications/bsl/online/index.php?home=true
Ainsworth, S., &; VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14(3), 241-255. doi: 10.1016/j.learninstruc.2004.06.002
Akpan, J. P. (2001). Issues Associated with Inserting Computer Simulations into Biology Instruction: A Review of the Literature. Electronic Journal of Science Education, 5(3).
Alessi, S. M., &; Trollip, S. R. (1991). Computer-based instruction: Methods and development. Englewood Cliffs, NJ: Prentice Hall.
Alessi, S. M., &; Trollip, S. R. (2001). Multimedia for learning: Methods and development. Boston, MA: Allyn and Bacon.
Amsel, E., Klaczynski, P. A., Johnston, A., Bench, S., Close, J., Sadler, E., &; Walker, R. (2008). A dual-process account of the development of scientific reasoning: The nature and development of metacognitive intercession skills. Cognitive Development, 23(4), 452-471. doi: 10.1016/j.cogdev.2008.09.002
Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., et al. (2009). Learning and Scientific Reasoning. Science, 323(5914), 586-587.
Bell, P. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. doi: 10.1080/095006900412284
Binkley, R. (1995). Argumentation, Education and Reasoning. Informal Logic, 17(2), 127-143.
Blanchette, I., &; Richards, A. (2004). Reasoning About Emotional and Neutral Materials. Psychological Science (Wiley-Blackwell), 15(11), 745-752. doi: 10.1111/j.0956-7976.2004.00751.x
Bloom, J. W. (2001). Discourse, Cognition, and Chaotic Systems: An Examination of Students' Argument About Density. Journal of the Learning Sciences, 10(4), 447-492.
Brem, S. K., &; Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604. doi: 10.1016/s0364-0213(00)00033-1
Breuer, K., &; Hajovy, H. (1991). Adaptive instructional simulations to improve learning of cognitive strategies. In L. Lipsitz (Ed.), Expert systems and intelligent computer-aided instruction (Vol. 2, pp. 154-157). Englewood Cliffs, NJ: Educational Technology Publications.
Brigandt, I. (2010). Scientific Reasoning Is Material Inference: Combining Confirmation, Discovery, and Explanation. International Studies in the Philosophy of Science, 24(1), 31-43.
Cavallo, A. M. L. (1996). Meaningful learning, reasoning ability, and students' understanding and problem solving of topics in genetics. Journal of Research in Science Teaching, 33(6), 625-656. doi: 10.1002/(sici)1098-2736(199608)33:6<625::aid-tea3>3.0.co;2-q
Cavallo, A. M. L., Wendell, H. P., &; Michelle, R. (2004). Gender Differences in Learning Constructs, Shifts in Learning Constructs, and Their Relationship to Course Achievement in a Structured Inquiry, Yearlong College Physics Course for Life Science Majors. School Science and Mathematics, 104(6), 288-300.
Chen, S. F. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers &; Education, 55(3), 1123-1130. doi: 10.1016/j.compedu.2010.05.009
Clark, R., &; Voogel, A. (1985). Transfer of training principles for instructional design. Educational Technology Research and Development, 33(2), 113-123. doi: 10.1007/bf02769112
Dennis, J. R., &; Kansky, R. J. (1984). Instructional Computing: An Action Guide for Educators. Glenview, IL: Pearson Scott Foresman.
Driver, R., Newton, P., &; Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. doi: 10.1002/(sici)1098-237x(200005)84:3<287::aid-sce1>3.0.co;2-a
Duschl, R. (2008). Science Education in Three-Part Harmony: Balancing Conceptual, Epistemic, and Social Learning Goals. Review of Research in Education, 32(1), 268-291. doi: 10.3102/0091732x07309371
Duschl, R. A., &; Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
Eemeren, F. H. v. (1995). A World of Difference: The Rich State of Argumentation Theory. Informal Logic, 17(2), 144-158.
Eemeren, F. H. v., &; Grootendorst, R. (1992). Argumentation, communication, and fallacies: a pragma-dialectical perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.
Eemeren, F. H. v., Grootendorst, R., Johnson, R. H., Plantin, C., &; Willard, C. A. (1996). Fundamentals of argumentation theory: a handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum Associates.
Erduran, S., &; Jiménez-Aleixandre, M. P. (2008). Argumentation in Science Education: Perspectives from Classroom-Based Research. London: Springer.
Gallagher, J. J. (2000). Teaching for understanding and application of science knowledge. School Science and Mathematics, 100(6), 310-318.
Hogan, K., &; Fisherkeller, J. (2005). Dialogue as data: Assessing students' scientific reasoning with interactive protocols. In J. M. Joel, H. W. James, &; D. N. Joseph (Eds.), Assessing Science Understanding (pp. 95-127). Burlington, MA: Academic Press.
Hopkins, D. (2008). A Teacher's Guide To Classroom Research. Philadelphia, PA: Open University Press.
iSTAR. (2011). Dimensions of scientific Reasoning, from http://www.istarassessment.org/category/srdims/
Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., &; Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792. doi: 10.1002/1098-237x(200011)84:6<757::aid-sce5>3.0.co;2-f
Karplus, R., Pulos, S., &; Stage, E. K. (1983). Early adolescents' proportional reasoning on ‘rate’ problems. Educational Studies in Mathematics, 14(3), 219-233. doi: 10.1007/bf00410539
Kelly, G. J., Druker, S., &; Catherine, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849-871.
Kelly, G. J., &; Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342. doi: 10.1002/sce.10024
Klauer, K. J. (1996). Teaching inductive reasoning: Some theory and three experimental studies. Learning and Instruction, 6(1), 37-57. doi: 10.1016/s0959-4752(96)80003-x
Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337. doi: 10.1002/sce.3730770306
Lawson, A. E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11-24. doi: 10.1002/tea.3660150103
Lawson, A. E. (2002). Sound and faulty arguments generated by preservice biology teachers when testing hypotheses involving unobservable entities. Journal of Research in Science Teaching, 39(3), 237-252. doi: 10.1002/tea.10019
Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408.
Lawson, A. E., Adi, H., &; Karplus, R. (1979). Development of Correlational Reasoning in Secondary Schools: Do Biology Courses Make a Difference? The American Biology Teacher, 41(7), 420-430.
Lewis, J., &; Leach, J. (2006). Discussion of Socio‐scientific Issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287. doi: 10.1080/09500690500439348
Liao, T. T. (1983). Using Computer Simulations to Integrate Learning. Simulation &; Gaming, 14(1), 21-28. doi: 10.1177/104687818301400103
Liao, Y.-W., &; She, H.-C. (2009). Enhancing Eight Grade Students' Scientific Conceptual Change and Scientific Reasoning through a Web-based Learning Program. Journal of Educational Technology &; Society, 12(4), 228-240.
Means, M. L., &; Voss, J. F. (1996). Who Reasons Well? Two Studies of Informal Reasoning among Children of Different Grade, Ability, and Knowledge Levels. Cognition and Instruction, 14(2), 139-178.
National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
National Research Council. (2000). How People Learn: Brain, Mind, Experience, and School: Expanded Edition. Washington, DC: National Academy Press.
National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
Newton, P., Driver, R., &; Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576. doi: 10.1080/095006999290570
Niaz, M., Aguilera, D., Maza, A., &; Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students' understanding of atomic structure. Science Education, 86(4), 505-525. doi: 10.1002/sce.10035
Novak, J. D., Wandersee, J. H., &; Mintzes, J. J. (2000). Assessing Science Understanding: A Human Constructivist View [Adobe Digital Editions version]. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&;db=nlebk&;AN=91111&;site=ehost-live
Nussbaum, E. M. (2002). Scaffolding Argumentation in the Social Studies Classroom. Social Studies, 93(3), 79-83.
Nussbaum, E. M., &; Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28(3), 384-395. doi: 10.1016/s0361-476x(02)00038-3
Osborne, J. (2010). Arguing to Learn in Science: The Role of Collaborative, Critical Discourse. Science, 328(5977), 463-466.
Osborne, J., Erduran, S., &; Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. doi: 10.1002/tea.20035
Padilla, M. J., Okey, J. R., &; Garrard, K. (1984). The effects of instruction on integrated science process skill achievement. Journal of Research in Science Teaching, 21(3), 277-287. doi: 10.1002/tea.3660210305
Petit, A., &; Soto, E. (2002). Already experts: Showing students how much they know about writing and reading arguments. Journal of Adolescent &; Adult Literacy, 45(8), 674-682.
Posner, G. J., Strike, K. A., Hewson, P. W., &; Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227. doi: 10.1002/sce.3730660207
Sampson, V., &; Clark, D. (2011). A Comparison of the Collaborative Scientific Argumentation Practices of Two High and Two Low Performing Groups. Research in Science Education, 41(1), 63-97. doi: 10.1007/s11165-009-9146-9
Sampson, V. D., &; Clark, D. B. (2006). Assessment of argument in science education: A critical review of the literature. Proceedings of the 7th International Conference on Learning Sciences, 655-661. doi: 10.1080/02615470220126471
Sandoval, W. A., &; Millwood, K. A. (2005). The Quality of Students' Use of Evidence in Written Scientific Explanations. Cognition &; Instruction, 23(1), 23-55. doi: 10.1207/s1532690xci2301_2
She, H.-C., &; Lee, C.-Q. (2008). SCCR digital learning system for scientific conceptual change and scientific reasoning. Computers &; Education, 51(2), 724-742. doi: 10.1016/j.compedu.2007.07.009
Siegel, H. (1995). Why Should Educators Care about Argumentation? Informal Logic, 17(2), 159-176.
Smetana, L. K., &; Bell, R. L. (2011). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 1-34. doi: 10.1080/09500693.2011.605182
Thomas, R., &; Hooper, E. (1991). Simulations: An opportunity we are missing. Journal of Research on Computing in Education, 23(4), 497.
Toulmin, S. E. (2003). The uses of argument. Cambridge: Cambridge University Press.
Venville, G. J., &; Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students' argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952-977. doi: 10.1002/tea.20358
Vogel, J. J., Vogel, D. S., Cannon-Bowers, J. A. N., Bowers, C. A., Muse, K., &; Wright, M. (2006). Computer Gaming and Interactive Simulations for Learning: A Meta-Analysis. Journal of Educational Computing Research, 34(3), 229-243.
Wertheimer, M. (1985). A Gestalt perspective on computer simulations of cognitive processes. Computers in Human Behavior, 1(1), 19-33. doi: 10.1016/0747-5632(85)90004-4
Winberg, T. M., &; Berg, C. A. R. (2007). Students' cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108-1133. doi: 10.1002/tea.20217
Yenilmez, A., Sungur, S., &; Tekkaya, C. (2006). Students' achievement in relation to reasoning ability, prior knowledge and gender. Research in Science &; Technological Education, 24(1), 129-138.
Yerrick, R. K. (2000). Lower track science students' argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807-838. doi: 10.1002/1098-2736(200010)37:8<807::aid-tea4>3.0.co;2-7
Yeung Chung, L., &; Grace, M. (2010). Students' reasoning processes in making decisions about an authentic, local socio-scientific issue: Bat conservation. Journal of Biological Education, 44(4), 156-165.
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223. doi: 10.1016/j.dr.2006.12.001
Zohar, A., &; Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. doi: 10.1002/tea.10008

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top