跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王博右
研究生(外文):Wang,Bo-Yo
論文名稱:氣懸性污染垂直排放於上升型街谷之擴散特性風洞實驗研究
論文名稱(外文):Wind tunnel study on the vertical discharge of airborne pollutant dispersion around the set-up canyon
指導教授:蕭葆羲蕭葆羲引用關係
指導教授(外文):Shiau,Bao-Shi
口試委員:林呈羅元隆謝志敏
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:102
中文關鍵詞:環境風洞迫近流場濃度擴散
外文關鍵詞:Environmental Wind TunnelApproaching flowConcentration diffusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要在探討都市地形下,兩建築物形成的街谷所造成汙染擴散之影響。試驗利用環境風洞配合渦流產生器(spire)及粗糙元素(roughness elements),模擬都市地形之迫近流場。
試驗使用垂直排放之煙囪對不同建築物形成的不同間距之街谷,與不同排放源高度探討不同排列方式對汙染物擴散之影響,將試驗結果與討論進行分析得以下之結論。
(1) 環境風洞配合渦流產生器粗糙元素及粗糙元素,模擬出所需之都市地形紊流邊界層,且指數律風速剖面之n值為0.27,符合Counihan(1975)實場研究結果之建議值。
(2) 當街谷間隔S較為狹窄,容易受建築物影響,街谷之上方,也會因後方建築物之阻擋,使流動朝上方回流造成濃度聚集的情形。街谷內的追蹤氣體之濃度較易累積且擴散較慢。當街谷間隔S較寬廣,街谷內之氣流有較大之流動性,因此追蹤氣體之濃度較易往下游擴散。
(3) 當前後排間距較小,而後排建築物高為2H時,由於氣流通過前排建築物已產生分離現象,在極短之距離又碰上後棟建築物產生分離現象,再加上受後排建築物之影響,使在後排建築物迎風面產生明顯之下切氣流,如此的交互作用之下,使追蹤氣體有明顯之抬升現象。

This study was to explore the dispersion characteristics of airborne pollutant around the set-up cayon. Experiment are conducted in the Environmental Wind Tunnel of Nation Taiwan Ocean University. Spire arrays roughness elements were deployed to simulate a turbulent boundary layer as the approaching flow. Cases of different building heights, different cayon spaces and source heighs are run in the experiments.Results are summarized as follows:
(1) The neutral atmospheric turbulent boundary layer flow was simulated as the approaching flow which had the power-law mean velocity profile with exponent n=0.27. This exponent value is within the range of urban type of atmospheric boundary layer flow proposed by Counihan(1975).
(2) When the canyons spacing becomes narrow,due to the the rear of the building of the barrier, the flow upward reflux causes aggregation concentration situation. The concentration of trace gases accumulate more readily around the canyon. As canyon spacing becomes broader, airflows in the canyon are the greater mobility. Therefore trace concentrations are transported in downstream.
(3) When the canyon spacing becomes small, while the rear building with height 2H(H is the front building height),a significant uplift flow phenomenon has occurred. This caused the tracer pollution accumulating around the apper position of rear building.

摘要 I
ABSTRACT II
目次 III
圖目次 V
符號說明 X
第一章 導論 1
1-1 前言 1
1-2 研究目的 1
1-3 文獻回顧 1
第二章 風洞試驗之基本理論分析 3
2-1 中性大氣紊流邊界層之平均風速剖面 3
2-2 中性大氣紊流邊界層之風洞試驗模擬 5
2-2-1 相似性法則 5
2-2-2 渦流產生器(spire)之設計原理 6
2-2-3 粗糙元素(roughness elements)之設計原理 7
2-3 高斯擴散理論 8
2-4 濃度因次分析 9
第三章 試驗儀器與量測 12
3-1 試驗儀器 12
3-1-1 大氣環境風洞介紹 12
3-1-2 風場量測儀器 13
3-1-3 濃度場量測之儀器 13
3-2 試驗設計與方法 14
3-2-1 模型設計 14
3-2-2 追蹤氣體之設計 14
3-2-3 採集斷面設計 15
第四章 試驗結果與討論 16
4-1 迫近流場之模擬結果 16
4-2 濃度擴散分佈特性分析與討論 16
4-2-1 後排建築物高為1.5H之濃度擴散分佈 16
4-2-2 後排建築物高為2H之濃度擴散分佈 17
4-2-3 後排建築物高度變化之垂直向濃度影響 18
4-2-4 改變煙囪之垂直向濃度影響 18
4-2-5 各斷面擴散尺度之變化 18
4-2-6 排放源下游各斷面最大濃度之變化 18
4-3 後排建築物表面濃度分佈特性分析與討論 19
第五章 結論 20
參考文獻 21
附圖 23
謝誌 102

[1] Ahmad, K.,Khare, M.,Chaudhy, K.K., “Wind tunnel simulation studies on dispersion at urban street and intersections-a review”, Journal of Wind Engineering and Industrial Aerodynamics ,Vol. 93,pp. 697-717,2005.
[2] Assimakopoulos, V.D.,ApSimon, H.M.,Moussiopoulos, N., “A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations”, Atmospheric Environment, Vol. 37, pp. 4037-4049,2003.
[3] Bietry, J., Sacre, C., and Simu, E., “Mean wind profiles and changes of terrain roughness”, Journal of the Structure Division, ASCE, Vol. 104, pp.1585-1593, 1978.
[4] Businger, J.A., “Aerodynamics of vegetated surface”, Chapter 10, pp.139-165; “Heat and Mass Transfer in the Biosphere”, Vol. 1; “Transfer Processes in the Plant Environment”, Scripton Book Co., Washington D.C., 1974.
[5] Cermak, J.E., “Application of fluid mechanics to wind engineering”, A freeman-scholar lecture, Journal of Fluids Engineering , ASME, Vol. 97, pp. 9-38, 1975.
[6] Cermak, J.E., “Wind tunnel design for physical modeling of atmospheric boundary layer”, Journal of Engineering Mechanics, Vol. 107, pp. 623-642, 1981.
[7] Counihan, J., “Adiabatic atmospheric boundary layer: A review and analysis of data from the period 1880-1972”, Atmospheric Environment, Vol. 9, pp. 871-905, 1975.
[8] Counihan, J., “Simulation of an adiabatic urban boundary layer in a wind tunnel”, Atmospheric Environment, Vol. 7, pp. 673-698, 1973.
[9] Devenport, A.G., “The relationship of wind structure to wind loading”, Proceedings of Symposium on Wind Effects on Building Sand Structure, pp. 53-102,1965.
[10] Gartshore, I.S., and DeCross, K.A., “Roughness element geometry required for wind tunnel simulations of the atmospheric wind”, Transactions of the ASME, Journal of Fluid Engineering, pp. 408-485, 1977.
[11] Irwin, H.P.A.H, “The design of spire foe wind simulation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 7, pp. 361-366, 1981.
[12] Jensen, M., “The model law for phenomena in a natural wind”, Ingenioren, Vol. 2, No. 4, 1958.
[13] Kato, M. and Hanafusa, T., “Wind tunnel simulation of atmospheric turbulent flow over a flat terrain”, Atmospheric Environment, Vol. 30, Issue 16, pp. 2853-2858, 1996.
[14] Nakayasa, H. and Nagai, H., “Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation Part 2:Turbulent flow and plume dispersion around a cubical building”, Journal of Nuclear Science and Technology, Vol. 48, pp. 374-383, 2011.
[15] Park, S.K.,Kim, S.D., “Dispersion characteristics of vehicle emission in an urban street canyon”, Science of the Total Environment, Vol. 323, pp. 263-271, 2004.
[16] Salim, M.S., Buccolieri, R., Chan, A., Sabatino, D.S., “Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, pp. 103-113, 2011.
[17] Sill, B.L., “Turbulent boundary layer profiles over uniform rough surface”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 31, pp. 147-163, 1988.
[18] Snyder, W.H., “Similarity criteria for the application of fluid models to the study of air pollution meteorology”, Boundary Layer Meteorology, Vol. 3, pp. 113-134, 1972.
[19] Townsend, A.A., “The structure of turbulent shear flow”, Cambridge University Press, pp. 53, 1956.
[20] Vardoulakis, S.,Fisher, B.E.A.,Pericleous, K.,Gonzalez-Flesca, .N., “Modelling air quality in street canyons : a review”, Atmospheric Environment, Vol. 37, pp. 155-182,2003.
[21] Wang,B.C, “Numerical study of dispersing pollutant clouds in a built-up environment”, International Journal of Heat and Fluid Flow, Vol. 30, pp. 3-19, 2009.
[22] Wooding, R.A., Bradley, E.F. and Marshall, J.K., “Drag due to regular arrays of roughness elements of varying geometry”, Boundary-Layer Meteorology, Vol. 5, Num. 3, pp. 285-308, 1973.
[23] 蕭葆羲, “環境風洞基本特性測試及中性大氣紊流邊界層之模擬”,國立臺灣海洋大學河海工程學系環境風洞實驗室技術報告,1998年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top