跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古皓齊
論文名稱:氮化鋁緩衝層的沉積條件對圖形化藍寶石基板磊晶氮化鎵的影響
論文名稱(外文):Effect of AlN Buffer Layer on the GaN Grown on Patterned Sapphire Substrate
指導教授:吳耀銓
口試委員:潘扶民林博文吳耀銓
口試日期:2016-09-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院半導體材料與製程設備學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:氮化鋁緩衝層圖形化藍寶石基板氮化鎵
外文關鍵詞:AlNBuffer LayerPatterned Sapphire SubstrateGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  高亮度發光二極體(LED)近年來蓬勃發展並且廣泛地被應用在路燈、汽車頭燈、螢幕背光板以及投影機等日常生活用品上。但功率與亮度都得再進一步提升才足以符合現今固態照明的需求。目前常用氮化鎵(GaN)來做發光二極體的材料,並使用藍寶石基板做為基板來磊晶氮化鎵,不過由於兩材料間的晶格不匹配與熱膨脹系數差異,因此會造成許多缺陷,使得內部量子效率(IQE)下降。解決的方法是圖型化藍寶石基板(PSS),可以讓差排彎曲,並增加表面粗糙度以改變光線路徑,同時提高了光取出效率(LEE)與內部量子效率。
  本實驗為在圖型化藍寶石基板上以物理氣相沉積(PVD)濺鍍一層氮化鋁(AlN)緩衝層之後再去磊晶氮化鎵,並製作成發光二極體。藉由改變氮化鋁的成長溫度去探討緩衝層對氮化鎵成長機制的影響。材料分析結果為以300°C成長的氮化鋁緩衝層磊晶品質最好,而電性分析結果為600°C的最好,其原因為雖然低溫的緩衝層在退火時較容易結晶化,但也因為結構較鬆散會在磊晶過程時被氫氣所蝕刻而降低磊晶品質。實驗結果證實了氮化鋁緩衝層的圖形化藍寶石基板大幅提升了氮化鎵的磊晶品質,而且可藉由控制氮化鋁緩衝層的成長溫度使其達到最佳化。

  High brightness light emitting diodes(LEDs) have been highly demand in various fields like using on road light, car headlight, backlight and projector. For the purpose of next-generation application of solid-state lighting, LEDs with higher internal and external quantum efficiency are required. The common material of LEDs is gallium nitride(GaN). We usually use sapphire as substrate to epitaxy GaN. There are still many problems between sapphire and GaN such as lattice mismatch and thermal expansion coefficient difference, which will make defects and degrade internal quantum efficiency(IQE). The solution we use is pattern sapphire substrate(PSS) which can make dislocation bending and change the optical path. It will improve both light extraction efficiency(LEE) and IQE.
  This experiment is use physical vapor deposition(PVD) to sputter a buffer layer of Aluminium Nitride(AlN) on PSS and epitaxy GaN to analysis. By changing the growth temperature of AlN to investigate the effect of the GaN properties. The growth temperature of 300°C is better in material analysis; the growth temperature of 600°C is better on optoelectronic characteristics. Because the low temperature buffer layer recrystallized easier when annealing but etched by hydrogen when grown GaN. The improvement of GaN quality was attributed to the AlN buffer layer of PSS, and the optimization could controlled by growth temperature of AlN buffer layer.

摘要 i
Abstract ii
目錄 v
圖目錄 vii
表目錄 x
一、 緒論 1
1.1 前言 1
1.2 研究動機 3
二、文獻回顧與理論背景 6
2.1 發光二極體理論 6
2.1.1 發光原理 6
2.1.2 發光二極體發光機制 8
2.1.3 發光二極體轉換效率 9
2.1.4 藍寶石基板 10
2.1.5 藍寶石與氮化鎵晶體結構以及特性簡介 13
2.2 圖形化藍寶石基板介紹及其優點 16
2.2.1 乾蝕刻簡介 17
2.2.2 濕蝕刻簡介 18
2.3 緩衝層(buffer layer)介紹 21
三、實驗方法 24
四、結果與討論 25
4.1 掃描式電子顯微鏡(scanning electron microscope, SEM) 25
4.2 發光度-電流-電壓量測(L-I-V curve) 28
4.3 X光繞射分析(X-ray diffraction, XRD) 31
4.4 光激發螢光光譜分析(Photoluminescence, PL) 33
4.5 原子力顯微鏡(atomic force microscope, AFM) 35
4.6 討論 36
五、結論與未來實驗規劃 39
5.1 結論 39
5.2 未來實驗規劃 40
六、參考文獻 41
1. Round, H.J., Electrical world Vol. 49. 1907: [New York McGraw-Hill Pub. Co.].
2. Holonyak, N. and S.F. Bevacqua, COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS. Applied Physics Letters, 1962. 1(4): p. 82-83.
3. Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, Isamu Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics, 1989. 28(12A): p. L2112.
4. Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 1986. 48(5): p. 353-355.
5. Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa, Shin-ichi Nagahama, High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 1995. 34: p. L797-L797.
6. LEDinside 回顧:LED編年史. Available from: http://www.ledinside.com.tw/outlook/20131212-28447.html
7. 全球居家智慧照明發展可期 市場標準統一為關鍵. Available from: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=1&Cat=10&id=0000381713_UC48S0370QUR034KEZZXM
8. 郭浩中, 賴芳儀, 郭守義, LED原理與應用, 五南出版, 二版3-8 (2012), pp. 80.
9. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, N. Moll, 1.4× efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes with thin (≤2000 Å) active regions, Appl. Phys. Lett. 74 (1999), pp. 2230.
10. 陳俞中, 濕蝕刻藍寶石圖形化基板形貌演化對氮化鎵磊晶的影響, 國立交通大 學, (2014), pp. 2,3,6,8,11,46,54,58.
11. Jr. W. Shockley and W. T. Read, A model for the field and temperature dependence of Shockley-Read-Hall lifetime in silicon,Phys. Rev. 87, No.835(1952), pp. 1585.
12. E.R. Dobrovinskaëiìa, L.A. Lytvynov, V.V. Pishchik, Sapphire: material, manufacturing, applications, Springer (2009), pp. 58.
13. W.E. Lee, K.P.D. Lagerlof, Structural and electron-diffraction data for sapphire (α-Al2O3), J Electron Micr Tech. 2 (1985), pp. 247.
14. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94 (2003), pp. 3675. 

15. T. Hanada, Basicp of ZnO, GaN, and related materials, Springer (2009), pp. 3. 

16. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, Large- band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys. 76 (1994), pp. 1363. 

17. J.N. Kuznia, M.A. Khan, D.T. Olson, R. Kaplan, J. Freitas, Influence of 
buffer layers on the deposition of high quality single crystal GaN over sapphire substrates, J. Appl. Phys. 73 (1993), pp. 4700. 

18. S. Nakamura, GaN growth using GaN buffer layer, Jpn. J. Appl. Phys. 30 (1991), pp.1705. 

19. K. Uchida, K. Nishida, M. Kondo, H. Munekata, Epitaxial growth of GaN layers with double-buffer layers, J.Cryst.Growth. 189 (1998), pp. 270. 

20. M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim, and J. H. Je , Effects of growth temperature on GaN nucleation layers, Appl. Phys. Lett. 75 (1999), pp. 2187. 

21. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett.48 (1986), pp. 353.
22. D.J. Park, J.Y. Lee, H.-K. Cho, C.-H. Hong, H.S. Cheong, Dislocation 
reduction in GaN epilayers by maskless pendeo-epitaxy process,J.Korean.Phys.Soc. 45 (2004), pp. 1253. 

23. A.M. Roskowski, E.A. Preble, S. Einfeldt, P.M. Miraglia, J. Schuck, R.Grober, R.F. DAVIS, Reduction in dislocation density and strain in GaN thin films grown via maskless pendo-epitaxy, OPTO-ELECTRON.REV. 10 (2002), pp. 261.
24. T.S. Zheleva, W.M. Ashmawi,K.A. Jones, Pendeo-epitaxy versus lateral epitaxial overgrowth of GaN: A comparative study via finite element analysis, Phys. Stat. Sol. (a). 176 (1999), pp. 545. 

25. T.S. Zheleva, S.A. Smith, D.B. Thomson, K.J. Linthicum, P. Rajagopal, R.F. Davis, Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films, J. Electron. Mater. 28 (1999), pp. 5.
26. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J.P. Ibbetson, S. P. DenBaars, U. K. Mishra and J. S. Speck, High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers, Appl. Phys. Lett. 75 (1999), pp. 1706. 

27. H. Miyake, A. Motogaito, K. Hiramatsu, Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys. 38 (1999), pp. 1000. 

28. T. Nishinaga, T. Nakano, S. Zhang, Epitaxial lateral overgrowth of GaAs by LPE, Jpn. J. Appl. Phys. 27 (1988), pp. 964.
29. S.S. Schad, M. Scherer, M. Seyboth, V. Schwegler, Extraction Efficiency of GaN-Based LEDs, phys. stat. sol. (a) 188, No. 1, 127–130 (2001), pp. 127.
30. T. Fujii,Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamuraa, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,Appl. Phys. Lett. 84 (2004), pp. 855.
31. Ray-Hua HORNG, Shao-Hua HUANG, Dong-Sing WUU and Yann-Zyh JIANG, Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding, Jpn, J. Appl. Phys.43, No.5A(2004), pp. 2510.
32. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern and S. A. Stockman, High-power AlGaInN flip-chip light-emitting diodes “Appl. Phys. Lett.78, No.22 (2001), pp. 3379.
33. K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal, J. Appl. Phys. 96 (2004), pp. 2501.
34. N.S. Yu, L.W. Guo, H. Chen, Z.G. Xing, B.H. Ge, J. Wang, X.L. Zhu, M.Z. Peng, J.F. Yan, H.Q. Jia, J.M. Zhou, Near ultraviolet InGaN/GaN MQWs grown on maskless periodically grooved sapphire substrates fabricated by wet chemical etching, J. Alloys Compd.428(2007), pp. 312.
35. Tae Su Oha, Hyun Jeong, Yong Seok Lee, Tae Hoon Seo, Ah Hyun Park, Hun Kim, Kang Jea Lee,Mun Seok Jeong, Eun-Kyung Suh, Defect structure originating from threading dislocations within the GaN film grown on a convex patterned sapphire substrate, Thin Solid Films. 519 (2011), pp. 2398.
36. Liang Meng, Wang Guohong, Li Hongjian, Li Zhicong, Yao Ran, Wang Bing, Li Panpan, Li Jing, Yi Xiaoyan, Wang Junxi and Li Jinmin, Low threading dislocation density in GaN films grown on patterned sapphire substrates, J. Semicond.33 (2012), pp. 113002.
37. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu and M. H. Pan, Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes, J. Electrochem. Soc. 153 (2006), pp. 765.
38. 莊達人, VLSI製造技術, 高立出版, 六版(2007), pp. 356. 

39. 蕭宏, 半導體製程技術討論, 培生出版, 三版(2007), pp. 315.
40. F. Dwikusuma, D. Saulys, T.F. Kuech, Study on sapphire surface 
preparation for III-nitride heteroepitaxial growth by chemical treatments, 
J. Electrochem. Soc. 149 (2002), pp. 603.
41. Y.J. Chen, C.H. Kuo, C.J. Tun, S.C. Hsu, Y.J. Cheng, C.Y. Liu, Fabrication of high-power InGaN-based light-emitting diode chips on pyramidally patterned sapphire substrate, Jpn. J. Appl. Phys. 49 (2010), pp. 020201.
42. S.J. Kim, Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique, Jpn. J. Appl. Phys. 44 (2005), pp. 2921.
43. W.C.Lai,C.H.Yen,Y.Y.Yang,C.K.Wang,S.J.Chang, GaN-Based Ultraviolet Light Emitting Diodes With Ex Situ Sputtered AlN Nucleation Layer,J.DisplayTechnol9(2013) 895–899.
44. C.H.Yen,W.C.Lai,Y.Y.Yang,C.K.Wang,T.K.Ko,S.J.Hon,S.J.Chang, GaN-Based Light-Emitting Diode With Sputtered AlN Nucleation Layer,IEEE Photon.Technol.Lett24(2012)294–296.
45. C.H. Chiu, Y.W. Lin, M.T. Tsai, B.C. Lin, Z.Y. Li, P.M. Tu, S.C. Huang, Earl Hsu, W.Y. Uen, W.I. Lee, H.C. Kuo, Journal of Crystal Growth 414 (2015) 258–262.
46. 謝承佑,利用奈米圖形化藍寶石基板改善氮化鎵品質以及成長半極性氮化鎵於a面圖形化藍寶石基板, 國立交通大學, (2012), p.23.
47. MOCVD growth system. Available from: http://www.ee.sc.edu/personal/faculty/simim/ELCT871/05%20MOCVD.pdf
48. Li-Chuan Chang, Yu-An Chen, and Cheng-Huang Kuo, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 7, JULY 2014 , Spatial Correlation Between Efficiency and Crystal Structure in GaN-Based Light-Emitting Diodes Prepared on High-Aspect Ratio Patterned Sapphire Substrate With Sputtered AlN Nucleation Layer
49. PROPERTIES OF THE III-NITRIDE SEMICONDUCTORS. Available from: http://www.semiconductors.co.uk/nitrides.htm#AlN
50. 陳建誌, 圖案化藍寶石基板表面形貌對氮化鎵系發光二極體的影響, 國立交通大學, (2014), p. 27.
51. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters,1986. 48(5): p. 353-355.
52. Y.Cheng, L.Wang, Y.Zhang, J.Ma, X.Yi, G.Wang and J.Li., ECS Solid State Letters 2, Q93, (2013).
53. Chul Huh, Kug-Seung Lee, Eun-Jeong Kang and Seong-Ju Park, Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface, J. Appl. Phys., Vol. 93, No. 11, 1 June 2003.
54. C.J. Huang, Y.K. Su, S.L. Wu, The effect of solvent on the etching of ITO electrode, Materials Chemistry and Physics 84 (2004) 146–150.
55. Jae-Hoon Lee, Dong-Yul Lee, Bang-Won Oh, Jung-Hee Lee, Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 1, JANUARY 2010, pp. 158.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊