|
1. Round, H.J., Electrical world Vol. 49. 1907: [New York McGraw-Hill Pub. Co.]. 2. Holonyak, N. and S.F. Bevacqua, COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS. Applied Physics Letters, 1962. 1(4): p. 82-83. 3. Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, Isamu Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics, 1989. 28(12A): p. L2112. 4. Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 1986. 48(5): p. 353-355. 5. Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa, Shin-ichi Nagahama, High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 1995. 34: p. L797-L797. 6. LEDinside 回顧:LED編年史. Available from: http://www.ledinside.com.tw/outlook/20131212-28447.html 7. 全球居家智慧照明發展可期 市場標準統一為關鍵. Available from: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=1&Cat=10&id=0000381713_UC48S0370QUR034KEZZXM 8. 郭浩中, 賴芳儀, 郭守義, LED原理與應用, 五南出版, 二版3-8 (2012), pp. 80. 9. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, N. Moll, 1.4× efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes with thin (≤2000 Å) active regions, Appl. Phys. Lett. 74 (1999), pp. 2230. 10. 陳俞中, 濕蝕刻藍寶石圖形化基板形貌演化對氮化鎵磊晶的影響, 國立交通大 學, (2014), pp. 2,3,6,8,11,46,54,58. 11. Jr. W. Shockley and W. T. Read, A model for the field and temperature dependence of Shockley-Read-Hall lifetime in silicon,Phys. Rev. 87, No.835(1952), pp. 1585. 12. E.R. Dobrovinskaëiìa, L.A. Lytvynov, V.V. Pishchik, Sapphire: material, manufacturing, applications, Springer (2009), pp. 58. 13. W.E. Lee, K.P.D. Lagerlof, Structural and electron-diffraction data for sapphire (α-Al2O3), J Electron Micr Tech. 2 (1985), pp. 247. 14. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94 (2003), pp. 3675.
15. T. Hanada, Basicp of ZnO, GaN, and related materials, Springer (2009), pp. 3.
16. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, Large- band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys. 76 (1994), pp. 1363.
17. J.N. Kuznia, M.A. Khan, D.T. Olson, R. Kaplan, J. Freitas, Influence of
buffer layers on the deposition of high quality single crystal GaN over sapphire substrates, J. Appl. Phys. 73 (1993), pp. 4700.
18. S. Nakamura, GaN growth using GaN buffer layer, Jpn. J. Appl. Phys. 30 (1991), pp.1705.
19. K. Uchida, K. Nishida, M. Kondo, H. Munekata, Epitaxial growth of GaN layers with double-buffer layers, J.Cryst.Growth. 189 (1998), pp. 270.
20. M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim, and J. H. Je , Effects of growth temperature on GaN nucleation layers, Appl. Phys. Lett. 75 (1999), pp. 2187.
21. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett.48 (1986), pp. 353. 22. D.J. Park, J.Y. Lee, H.-K. Cho, C.-H. Hong, H.S. Cheong, Dislocation
reduction in GaN epilayers by maskless pendeo-epitaxy process,J.Korean.Phys.Soc. 45 (2004), pp. 1253.
23. A.M. Roskowski, E.A. Preble, S. Einfeldt, P.M. Miraglia, J. Schuck, R.Grober, R.F. DAVIS, Reduction in dislocation density and strain in GaN thin films grown via maskless pendo-epitaxy, OPTO-ELECTRON.REV. 10 (2002), pp. 261. 24. T.S. Zheleva, W.M. Ashmawi,K.A. Jones, Pendeo-epitaxy versus lateral epitaxial overgrowth of GaN: A comparative study via finite element analysis, Phys. Stat. Sol. (a). 176 (1999), pp. 545.
25. T.S. Zheleva, S.A. Smith, D.B. Thomson, K.J. Linthicum, P. Rajagopal, R.F. Davis, Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films, J. Electron. Mater. 28 (1999), pp. 5. 26. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J.P. Ibbetson, S. P. DenBaars, U. K. Mishra and J. S. Speck, High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers, Appl. Phys. Lett. 75 (1999), pp. 1706.
27. H. Miyake, A. Motogaito, K. Hiramatsu, Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys. 38 (1999), pp. 1000.
28. T. Nishinaga, T. Nakano, S. Zhang, Epitaxial lateral overgrowth of GaAs by LPE, Jpn. J. Appl. Phys. 27 (1988), pp. 964. 29. S.S. Schad, M. Scherer, M. Seyboth, V. Schwegler, Extraction Efficiency of GaN-Based LEDs, phys. stat. sol. (a) 188, No. 1, 127–130 (2001), pp. 127. 30. T. Fujii,Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamuraa, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,Appl. Phys. Lett. 84 (2004), pp. 855. 31. Ray-Hua HORNG, Shao-Hua HUANG, Dong-Sing WUU and Yann-Zyh JIANG, Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding, Jpn, J. Appl. Phys.43, No.5A(2004), pp. 2510. 32. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern and S. A. Stockman, High-power AlGaInN flip-chip light-emitting diodes “Appl. Phys. Lett.78, No.22 (2001), pp. 3379. 33. K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal, J. Appl. Phys. 96 (2004), pp. 2501. 34. N.S. Yu, L.W. Guo, H. Chen, Z.G. Xing, B.H. Ge, J. Wang, X.L. Zhu, M.Z. Peng, J.F. Yan, H.Q. Jia, J.M. Zhou, Near ultraviolet InGaN/GaN MQWs grown on maskless periodically grooved sapphire substrates fabricated by wet chemical etching, J. Alloys Compd.428(2007), pp. 312. 35. Tae Su Oha, Hyun Jeong, Yong Seok Lee, Tae Hoon Seo, Ah Hyun Park, Hun Kim, Kang Jea Lee,Mun Seok Jeong, Eun-Kyung Suh, Defect structure originating from threading dislocations within the GaN film grown on a convex patterned sapphire substrate, Thin Solid Films. 519 (2011), pp. 2398. 36. Liang Meng, Wang Guohong, Li Hongjian, Li Zhicong, Yao Ran, Wang Bing, Li Panpan, Li Jing, Yi Xiaoyan, Wang Junxi and Li Jinmin, Low threading dislocation density in GaN films grown on patterned sapphire substrates, J. Semicond.33 (2012), pp. 113002. 37. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu and M. H. Pan, Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes, J. Electrochem. Soc. 153 (2006), pp. 765. 38. 莊達人, VLSI製造技術, 高立出版, 六版(2007), pp. 356.
39. 蕭宏, 半導體製程技術討論, 培生出版, 三版(2007), pp. 315. 40. F. Dwikusuma, D. Saulys, T.F. Kuech, Study on sapphire surface
preparation for III-nitride heteroepitaxial growth by chemical treatments,
J. Electrochem. Soc. 149 (2002), pp. 603. 41. Y.J. Chen, C.H. Kuo, C.J. Tun, S.C. Hsu, Y.J. Cheng, C.Y. Liu, Fabrication of high-power InGaN-based light-emitting diode chips on pyramidally patterned sapphire substrate, Jpn. J. Appl. Phys. 49 (2010), pp. 020201. 42. S.J. Kim, Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique, Jpn. J. Appl. Phys. 44 (2005), pp. 2921. 43. W.C.Lai,C.H.Yen,Y.Y.Yang,C.K.Wang,S.J.Chang, GaN-Based Ultraviolet Light Emitting Diodes With Ex Situ Sputtered AlN Nucleation Layer,J.DisplayTechnol9(2013) 895–899. 44. C.H.Yen,W.C.Lai,Y.Y.Yang,C.K.Wang,T.K.Ko,S.J.Hon,S.J.Chang, GaN-Based Light-Emitting Diode With Sputtered AlN Nucleation Layer,IEEE Photon.Technol.Lett24(2012)294–296. 45. C.H. Chiu, Y.W. Lin, M.T. Tsai, B.C. Lin, Z.Y. Li, P.M. Tu, S.C. Huang, Earl Hsu, W.Y. Uen, W.I. Lee, H.C. Kuo, Journal of Crystal Growth 414 (2015) 258–262. 46. 謝承佑,利用奈米圖形化藍寶石基板改善氮化鎵品質以及成長半極性氮化鎵於a面圖形化藍寶石基板, 國立交通大學, (2012), p.23. 47. MOCVD growth system. Available from: http://www.ee.sc.edu/personal/faculty/simim/ELCT871/05%20MOCVD.pdf 48. Li-Chuan Chang, Yu-An Chen, and Cheng-Huang Kuo, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 7, JULY 2014 , Spatial Correlation Between Efficiency and Crystal Structure in GaN-Based Light-Emitting Diodes Prepared on High-Aspect Ratio Patterned Sapphire Substrate With Sputtered AlN Nucleation Layer 49. PROPERTIES OF THE III-NITRIDE SEMICONDUCTORS. Available from: http://www.semiconductors.co.uk/nitrides.htm#AlN 50. 陳建誌, 圖案化藍寶石基板表面形貌對氮化鎵系發光二極體的影響, 國立交通大學, (2014), p. 27. 51. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters,1986. 48(5): p. 353-355. 52. Y.Cheng, L.Wang, Y.Zhang, J.Ma, X.Yi, G.Wang and J.Li., ECS Solid State Letters 2, Q93, (2013). 53. Chul Huh, Kug-Seung Lee, Eun-Jeong Kang and Seong-Ju Park, Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface, J. Appl. Phys., Vol. 93, No. 11, 1 June 2003. 54. C.J. Huang, Y.K. Su, S.L. Wu, The effect of solvent on the etching of ITO electrode, Materials Chemistry and Physics 84 (2004) 146–150. 55. Jae-Hoon Lee, Dong-Yul Lee, Bang-Won Oh, Jung-Hee Lee, Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 1, JANUARY 2010, pp. 158.
|