跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智凱
研究生(外文):Chih-Kai Chang
論文名稱:以FPGA為基礎之適應性步階迴歸控制線型感應馬達驅動系統
論文名稱(外文):FPGA-Based Adaptive Backstepping Control for Linear Induction Motor Drive
指導教授:林法正林法正引用關係
指導教授(外文):Faa-Jeng Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:99
中文關鍵詞:適應性步階迴歸控制計算轉矩控制間接磁場導向控制FPGA線型感應馬達
外文關鍵詞:linear induction motorFPGAindirect field-oriented controlcomputed-torque controladaptive backstepping control
相關次數:
  • 被引用被引用:4
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本論文之主旨為發展以FPGA(Field Programmable Gate Array)為基礎之適應性步階迴歸控制線型感應馬達驅動系統。本文使用結合適應性機制與步階迴歸控制器優點之適應性步階迴歸控制器,以克服馬達運動控制中所出現包含摩擦力之不確定項。首先推導出間接磁場導向線型感應馬達的動態模型,並利用FPGA發展模組、D/A轉換器、三角波比較電流控制之驅動電路以及IGBT功率模組,完成以FPGA控制之線型感應馬達驅動系統。接著設計一比例-積分-微分計算轉矩控制器,然而其命令追隨效果並不是很好,因此又提出步階迴歸與步階迴歸順滑模態兩種控制器,其中此兩種控制器內包含不確定項,且不確定項的上限值必須事先得知。然而在實際應用上,不確定項上限值是很難事先得知的,因此提出適應性機制來估測不確定項上界值之適應性步階迴歸與適應性步階迴歸順滑模態兩種控制器,以使馬達達到良好的追隨響應與強健性。最後由實作結果驗證有適應性機制之步階迴歸控制器比沒有適應性機制之步階迴歸控制器有更好之追隨響應。
An FPGA-based adaptive backstepping controller, which combines both the merits of adaptive law and backstepping control, is proposed in this thesis to control the mover position of a linear induction motor (LIM) drive to compensate the uncertainties including the friction force. First, the dynamic model of an indirect field-oriented LIM drive is derived. Next, an FPGA-based LIM drive system, which consists of FPGA development board, D/A converters, a ramp comparison current-controlled PWM, and IGBT inverter, is implemented. Then, a proportional-intergral-derivative (PID) computed-torque controller is designed, but the tracking response is not good. Moreover, a backstepping controller and a backstepping sliding-mode controller are presented. The uncertainties are lumped and the upper bound of the lumped uncertainty is necessary in the design of the backstepping controller and the backstepping sliding-mode controller. However, the upper bound of the lumped uncertainty is difficult to obtain in advance in practical applications. Therefore, an adaptive law is derived to adapt the value of the lumped uncertainty in real time, and an adaptive backstepping controller and an adaptive backstepping sliding-mode controller are designed to make the LIM drive possessing the advantages of good transient control performance and robustness. Finally, one can verify that the adaptive backstepping control systems are better than the conventional backstepping control systems from the experimental tracking responses.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文大綱 4
第二章 線型感應馬達和其驅動系統電路 6
2.1 簡介 6
2.2 線型感應馬達結構介紹 6
2.3 線型感應馬達之驅動系統 8
2.3.1 電流感測電路 8
2.3.2 三角波比較電流控制電路 10
2.3.3 IGBT互鎖與觸發電路 13
2.3.4 IGBT模組 16
2.3.5 過電流保護電路 17
2.3.6 完整驅動控制電路圖 19
2.4 馬達編碼器介面電路 19
2.5 D/A介面電路 19
2.6 線型感應馬達控制與驅動系統之實體圖 23
第三章 以FPGA為基礎之線型感應馬達控制晶片 26
3.1 簡介 26
3.2 FPGA內部結構 28
3.2.1 Configurable Logic Block 31
3.2.2 Block SelectRAM 32
3.2.3 Multiplier 33
3.2.4 Digital Clock Management 34
3.2.5 Routing Resource 35
3.3 線型感應馬達間接磁場導向控制 35
3.4 FPGA控制晶片其設計架構 41
3.4.1 位置與速度編碼器 41
3.4.2 命令產生器 44
3.4.3 間接磁場導向控制模組 44
3.4.4 資料與D/A控制器 47
3.4.5 控制器模組 51
第四章 以FPGA設計PID計算轉矩控制器 52
4.1 簡介 52
4.2 PID計算轉矩控制法則 52
4.3 PID計算轉矩控制器之實現 55
4.4 PID計算轉矩控制器實測結果 58
第五章 以FPGA設計適應性步階迴歸控制器 61
5.1 簡介 61
5.2 適應性步階迴歸控制法則 61
5.3 適應性步階迴歸控制器之實現 65
5.4 適應性步階迴歸控制器實測結果 68
第六章 以FPGA設計適應性步階迴歸順滑模態控制器 76
6.1 簡介 76
6.2 適應性步階迴歸順滑模態控制法則 76
6.3適應性步階迴歸順滑模態控制器之實現 81
6.4 適應性步階迴歸順滑模態控制器實測結果 85
第七章 結論與未來的研究方向 93
參考文獻 95
作者簡歷 99
[1]S. A. Nasar and I. Boldea, Linear Electric Motors: Theory, Design, and Practical Applications. New Jersey: Prentice-Hall, 1987.
[2]I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators. London, U. K.: Cambridge University Press, 1997.
[3]G. W. Mclean, “Review of recent progess in linear motor,” Proc. IEE Pt. B, vol. 135, no. 6, pp. 380-416, 1988.
[4]E. R. Laithwaite, “Adapting a linear induction motor for the acceleration of large masses to high velocities,” Proc. IEE—Electric Power Applications, vol. 142, no. 4, pp. 262-268, 1995.
[5]I. Takahashi and Y. Ide, “Decoupling control of thrust and attractive force of a LIM using a space vector control inverter,” IEEE Trans. Industry Applications, vol. 29, no. 1, pp. 161-167, 1993.
[6]Z. Zhang, T. R. Eastham, and G. E. Dawson, “Peak thrust operation of linear induction machines from parameter identification,” in Proc. IEEE Industry Applications Conf., pp. 375-379, 1995.
[7]G. Bucci, S. Meo, A. Ometto, and M. Scarano, “The control of LIM by a generalization of standard vector techniques,” in Proc. IEEE Industry Applications Conf., pp. 623-626, 1994.
[8]G. H. Abdou and S. A. Sherif, “Theoretical and experimental design of LIM in automated manufacturing systems,” IEEE Trans. Industry Applications, vol. 27, no. 2, pp. 286-293, 1991.
[9]S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to friction compensation,” in Proc. IEEE Decision and Control Conf., pp. 4159-4164, 1997.
[10]A. P. Maulana, H. Ohmori, and A. Sano, “Friction compensation strategy via smooth adaptive dynamic surface control,” in Proc. IEEE Control Applications Conf., pp. 1090-1095, 1999.
[11]B. Friedland and Y. J. Park, “On adaptive friction compensation,” IEEE Trans. Automatic Control, vol. 37, no. 10, pp. 1609-1612, 1992.
[12]Y. Tan, J. Chang, and H Tan, “Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties,” IEEE Trans. Industrial Electronics, vol. 50, no. 5, pp. 944-952, 2003.
[13]F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear induction motor drive to track periodic references,” Proc. IEE—Electric Power Applications, vol. 147, no. 6, pp. 449-458, 2000.
[14]Y. Zhang, B Fidan, and P. A. Ioannou, “Backstepping control of linear time-varying systems with known and unknown parameters,” IEEE Trans. Automatic Control, vol. 48, no. 11, pp. 1908-1925, 2003.
[15]K. S. Kim and Y. Kim, “Robust backstepping control for slew maneuver using nonlinear tracking function,” IEEE Trans. Control Systems Technology, vol. 11, no. 6, pp. 822-829, 2003.
[16]F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor drive,” Proc. IEE—Electric Power Applications, vol. 149, no. 3, pp. 184-194, 2002.
[17]J. Zhou, C Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain nonlinear systems with unkown backlash-like hysteresis,” IEEE Trans. Automatic Control, vol. 49, no. 10, pp. 1751-1757, 2004.
[18]A. R. Benaskeur and A. Desbiens, “Backstepping-based adaptive PID control,” Proc. IEE—Control Theory Applications, vol. 149, no. 1, pp. 54-59, 2002.
[19]H. J. Marquez, Nonlinear Control Systems: Analysis and Design. New Jersey: John Wiley & Sons, 2003.
[20]K. Skahill, VHDL for Programmable Logic. California: Addison-Wesley, 1996.
[21]H. C. Roth, Digital Systems Design Using VHDL. Boston: PWS, 1998.
[22]王東海,以FPGA為基礎之模糊-順滑模態控制線型感馬達驅動系統, 國立東華大學電機工程學系碩士學位論文,2005。
[23]黃柏凱,以基因演算法為基礎之遞迴式模糊類神經網路控制線型感馬達驅動系統,私立中原大學電機工程學系碩士學位論文,2003。
[24]林法正與魏榮宗,電機控制,滄海書局股份有限公司,2002。
[25]唐佩忠,VHDL與數位邏輯設計,高立圖書有限公司,1999。
[26]Data Sheet, Virtex-II Platform FPGAs. Xilinx Inc., 2005.
[27]D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives. Oxford: Clarendon Press, 1996.
[28]W. Leonhard, Control of Electrical Drives. Berlin: Springer-Verlag, 1996.
[29]F. J. Lin, R. J. Wai, W. D. Chou, and S. P. Hsu, “Adaptive backstepping control using recurrent neural network for linear induction motor drive,“ IEEE Trans. Industrial Electronics, vol. 49, no. 1, pp. 134-146, 2002.
[30]劉昌煥,交流電機控制,東華書局股份有限公司,2001。
[31]Data Sheet, Dual 12-Bit DACPORT-AD7237. Analog Device, America.
[32]K. J. Astrom and B. Wittenmark, Computed Controlled Systems: Theory and Design. New Jersey: Prentice-Hall, 1984.
[33]F. J. Lin and R. J. Wai, “A hybrid computed torque controller using fuzzy neural network for motor-quick-return servo mechanism,” IEEE Trans. Mechatronics, vol. 6, no. 1, pp. 75-89, 2001.
[34]F. J. Lin, Y.S. Lin, and S. L. Chiu, “Slider-crank mechanism control using adaptive computed torque technique,” Proc. IEE—Control Theory Applications, vol. 145, no. 3, pp. 364-376, 1998.
[35]A. Chae, C. Atkeson, J. Griffiths, and J. Hollerbach, ” Experimental evaluation of feedforward and computed torque control,” in Proc. IEEE Robotics and Automation Conf., pp. 165-168, 1987.
[36]G. F. Franklin, J. David Powell, and E. N. Abbas, Feedback Control of Dynamic Systems. New Jersey: Prentice-Hall, 2002.
[37]J. Slotine and W. Li, Applied Nonlinear Control. New Jersey: Prentice-Hall, 1991.
[38]陳永平與張浚林,可變結構控制設計,全華科技圖書股份有限公司,2002。
[39]V. I. Utkin, “Sliding mode control design principles and applications to electric drives,” IEEE Trans. Industrial Electronics, vol. 40, no. 1, pp. 23-36, 1993.
[40]F. J. Lin and S. L. Chiu, “Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,” Proc. IEE—Control Theory Applications, vol. 77, pp. 63-72, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊