跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瑜婷
研究生(外文):Yu-Ting Huang
論文名稱:多功能之生醫類比前置電路
論文名稱(外文):A multi-function biomedical analog front end IC
指導教授:呂學士
指導教授(外文):Shey-Shi Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:91
中文關鍵詞:類比前置電路
外文關鍵詞:analog front end IC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴隨著半導體製程技術的進步與成熟,已經能將類比與數位電路結合在一起,並做在同一晶片上。又由於生物醫學上的需求,近幾年來,已成功的利用CMOS技術去結合生物醫學感測器與CMOS電路,實現微小化、低雜訊、低功率、與低成本的單晶生醫晶片。而在生物醫學系統當中,必須先將從感測器進來的類比訊號做優先的處理與調整,所以此論文的目的為,使用TSMC 0.35μm CMOS 2P4M的製程技術來完成多功能之生醫類比前置電路,其主要的三個電路分別為儀測放大器(IA)、二階低通濾波器(two-order LPF)、與一個可程式化增益的放大器(PGA)。
此論文的整個電路架構,是由本實驗室已成功完成的儀測放大器,透過數位控制開關以及回授控制方式來實現可依訊號強度不同做適度放大倍率的電路系統,再藉由低通濾波器濾掉由截波技術所造成的非理想頻率,並經由後端的可程式化增益放大器做進一步的訊號放大。整個系統再藉由開關的處理來達到多功能的設計,使得能夠處理廣大範圍的生物醫學信號,並針對微小的訊號種類(電壓、電流)做適度的調整。整個晶片的面積是1.8x1.35 mm 。在電壓供應為3V下的功率消耗為944.2μW。
With the advancement and maturation of semiconductor technology, the digital and analog circuit has been integrated on the same chip. In recent years, because of the demand on biomedicine, CMOS bio-sensors have already realized successfully with CMOS technique, achieving miniature, low noise, low power and low cost biomedical systems. In addition, analog front-end circuit with the function of signal arrangement is a critical component in the biomedical system. In this thesis, the main three pieces of circuit are instrumentation amplifier (IA), second-order LPF and a programmable gain amplifier (PGA). They are fabricated in TSMC 0.35μm CMOS 2P4M process.
The first stage of the system is based on IA which had accomplished by our laboratory and through the digital control switch and feedback loop to carry out the circuit system with the function of adjusting different intensity signal. Then, using a two-order LPF ( Sallen-key circuit ) to suppress the spikes from the clock feedthrough and charge injection caused by nonideality of the chopper switches. Finally, the signal is further amplified by programmable gain amplifier in the last stage. In order to let the whole system to deal with a wide range of biomedical signals and attain appropriate adjustment according to different kind of small signal sources, the design relies on a switch on/off devise to achieve these multi-functions. The die area is 1.8mm x 1.35mm and the power consumption is 944.2uW from a 3V voltage supply.
致謝 1
摘要 4
Abstract 5
Content 7
List of Figures 10
List of table 13
Chapter 1 Introduction 14
1.1 Motivation 14
1.2 Thesis Organization 17
Chapter 2 The fundamentals of Analog Front-End 19
2.1 Introduction 19
2.2 Offset and Noise in the CMOS Circuit 20
2.2.1 Basic CMOS Amplifier 20
2.2.2 Noise Spectrum Analysis[7] 21
2.3 Low noise and Low Offset Circuits Techniques : Chopper Technique 22
2.3.1 Basic Principle [6],[10] 22
2.3.2 Chopper Modulation[11] 24
2.3.3 Effect of Chopping on the Noise of Chopper Amplifier[12] 26
2.3.4 Residual Offset[13] 27
2.3.5 Chopping Frequency Select[14] 29
2.4 Circuit Analysis of Analog Front-End 30
2.4.1 Introduction 30
2.4.2 Noise Analysis of Non-inverting and Inverting Amplifiers[10] 31
2.4.3 Instrumentation Amplifier (IA) 33
2.4.3.1 Proposed Instrumentation Amplifier[15] 34
2.4.3.2 Residual Offset Reduction of DDA with Chopper Technique 35
2.4.4 Low-Pass Filter[6] 37
2.4.5 Programmable Amplifier[17] 40
2.5 Summary 41
Chapter 3 Instrumentation Amplifier 42
3.1 Introduction 42
3.2 RRDDA Incorporating Chopper Technique[16] 44
3.2.1 Overview of the circuit 44
3.2.2 Low Noise Design[24] 45
3.2.3 Chopper Modulator 47
3.2.4 Oscillator[33] 48
3.2.5 Clock Generator : 50
3.3 Simulation Result 50
3.4 Measurement Results 56
3.4.1 Measurement setup 56
3.4.1.1 Die Photograph and PCB design 56
3.4.1.2 AC Response Measurement Setup 57
3.4.1.3 DC Characteristic Measurement Setup 58
3.4.1.4 Noise Measuement Setup 59
3.4.2 Experimental Results 60
3.5 Summary 66
Chapter 4 A Biomedical Analog Front-End 67
4.1 Introduction 67
4.2 The Architecture of Proposed Analog Front End 68
4.3 Design and Implementation of Proposed Biomedical Analog Front End 69
4.3.1 Instrumentation Amplifier and Digital Controller 69
4.3.2 Symmetrical Miller CMOS OTA 70
4.3.3 Second-Order Bessel Low-Pass Filter 71
4.3.4 Programmable Gain Amplifier ( PGA ) 74
4.4 Simulation Results 75
4.4.1 Operational transconductance Amplifier ( OTA ) 75
4.4.2 Second-Order Bessel Low-Pass Filter 80
4.4.3 Programmable Gain Amplifier ( PGA ) 81
4.5 Measurement Setup and Experimental Results 83
4.5.1 Die Photograph 83
4.5.2 Experimental Results 84
Chapter 5 Conclusion 85
References 87
[1] Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 937-946, July 1998.
[2] W. Y. Chung et al., “Modular-based design and implementation of a programmable demand pacemaker,” in Proc. 17th Annual Int. Conf. IEEE/EMBS, Montreal, QC, Canada, 1995.
[3] M. Steyaert and W. Sansen, “Low-power monolithic signal-conditioning system” , IEEE J.Solid-state Circuits, vol.25, pp.609-612, Apr. 1990.
[4] C-.H. Chen, R.-Z Hwang, L.-S Huang, S. Lin, H.-C. Chen, Y.-C. Yang, Y.-T. Lin, S.-A. Yu, Y.-H Wang, N.-K. Chou, S.-S. Lu, “ Awireless Bio-mems sensor for c-reactive protein detection based nanomechanics,” ISSCC, pp. 562-563 , February 2006.
[5] M. Yildiz and F. N. Guler, A. Turkmen and D. Yilmaz, “Biopotential Instrumentation Set,” 2001 proceedings of the 23rd Annual EMBS International Conference, pp. 3269-3272, Oct 2001.
[6] Sergio Solid-Bustos and Jose Silva-Martinez, “Design considerations for biomedical signal interfaces,” 1999 IEEE.
[7] Antonn Bakker, Kevin Thiele, and Johan H. Huijsing, “ A CMOS nestedchopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 937-946, Dec 2000.
[8] W. Marshall Leach, JR, “Fundamentals of low-noise analog circuit design,” proceedings of the IEEE, vol. 82, Osc 1994.
[9] 高宗愷,”低電壓三角積分調變器之設計與製作,” 台灣大學碩士論文,July 2003.
[10] Tao Yin, Haigang Yang, Quan Yuan, and Guoping Cui, “Noise analysis and simulation of chopper amplifier,” APCCAS 2006.
[11] Christian C.Enz and Gabor C. Teams, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” proceedings of the IEEE, Nov 1996.
[12] Christian C.Enz, Eric A. Vittoz, and Francois Krummenacher, “ A CMOS Chopper Amplifier,” IEEE J. Solid-State Circuits, vol. 22, pp. 335-341, June 1987.
[13] Christian Menolfi and Qiuting Huang, “A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors,” IEEE J. Solid-State Circuits, vol. 32, pp. 968-975, June 1997.
[14] M.A.T Sanduleanu and A.J.M. van Yuijl, “a low noise, low residual offset, chopped amplifier for mixed level applications ,” 1998 IEEE.
[15] Germano Nicolliini and Carlo Guardiani, “A 3.3V 600n Vrms, gain-programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, vol. 28, pp. 915-920, August 1993.
[16] K. A. Ng and P. k. Chan, “A CMOS Front-End IC for Portable EEG/ECG Monitoring Applications”, IEEE Transaction on Circuit, vol. 52, no.11, pp.2335-2347, Nov. 2005.
[17] Chanf Hao-Shun, “Automatic gain control for VDSL Receiver analog front end,” 台灣大學碩士論文,June 2002.
[18] R. F. Yaziciolu and P. Merken, R. Puers and C. V. Hoof, “A 60uW 60nV/√HZ Readout Front-End for Protable Biopotential Acquisition Systems,” ISSCC, pp. 56-58 , February 2006.
[19] K. U. Kirstein, Y. Li, M. Zimmermann, C. Vancura, T. Volden, W. H. Song, J. Lichtenberg and A. Hierlemannn, “Cantilever-Based in CMOS Technology”, Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
[20] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A Compact Power-Efficient 3V CMOS Rail-to-Rail Input/Output operational Amplifier for VLSI Cell Libraries”, IEEE J. Solid-State Circuits, vol. 29, no. 12, pp.1505-1513, Dec. 1994
[21] J. J. Carr and J. M. Brown, “Introduction to Biomedical Equipment Technology,” Pretice Hall, Fourth Edition, ISBN 0-13-010492-2.
[22] C. J. Yen, W. Y. Chung and M. C. Chi “Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications”, IEEE Transaction on circuits and systems, vol. 51, no. 4, pp. 691-699, April 2004.
[23] J. H. Weng, C. J. Yu, C. Y. Yang and P. C. Yang “A Low-Noise Microsensor Amplifier with Automatic Gain Control System,” ISCAS, pp.1410-1413, 2006.
[24] R. Gregorian, “Introduction to CMOS OP-AMPS and Comparators”, Wily Inter-Science, ISBN 0-471-31778-0.
[25] 董人宏,“The design and implementation of fully-differential chopper-stabilized operational amplifier, ” 暨南大學碩士論文,June 2004
[26] 黃英能,“Research on chopper-stabilized operational amplifier design for temperature-sensing system, ” 暨南大學碩士論文,June 2004
[27] Andrew T.K. Tang, “A 3μV-offset operational amplifier with 29nV/√HZ input noise PSD at DC employing both chopping and autozeroing.” ISSCC, February 2002.
[28] Qiuting Huang, Christian Menolfi “A 200nV 6.5 nV/√HZ noise PSD 5.6kHZ chopper instrumentation amplifier in 1μm digital CMOS.” ISSCC, February 2001.
[29] Anton Bkker, Kevin Thiele ,and Johan H. Huijsing “A CMOS nested-chopper instrumentation amplifier with 100-nV offset.” ISSCC, February 2000.
[30] R.Martins and F.A. Vaz, “A CMOS IC for portable EEG acquisition systems , ” IEEE Trans, Instrum. Meas, pp, 1191-1196, Oct 1998.
[31] –“A CMOS IC for portable EEG acquisition systems,” in Proc. IEEE Tech. Conf. Instrumentation and Measurement, pp.1406-1410, Mat 1998.
[32] A. Uranga, X. Navarro, and N. Barniol, “Integrated CMOS amplifier for ENG signal recording, ” IEEE Transactions on biomedical engineering, Dec 2004.
[33] P.K. Chan, K.A. Ng, and X.L. Zhang, “ A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits,” the 47th IEEE Midwest Symposium on Circuits and Systems.
[34] Fairchid Semiconductor, “CMOS Oscillators,” 1998 Fairchid Semiconductor Corporation.
[35] Hsu Yu-Pin,“A CMOS Low-noise Analog Front-End IC Design for Biomedical Applications ” 台灣大學碩士論文,July 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top