跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范植軒
研究生(外文):FAN,CHIH-HSUAN
論文名稱:穿透性錳超氧化物歧化酶提高斑馬魚抗亞硝酸耐受性之研究
論文名稱(外文):Study of HIV-1 TAT Manganese Superoxide Dismutass(MnSOD) Increase Danio rerio Confrontation Nitrite
指導教授:鄭秋敏
指導教授(外文):CHENG,CHIU-MIN
口試委員:邱國勛劉俊宏
口試委員(外文):CHIU,KUO-HSUNLIU,CHUN-HUNG
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產養殖研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:細胞穿透肽亞硝酸鹽活性氧錳超氧化物歧化酶
外文關鍵詞:MnSODcell penetrating peptidesROSNitrite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在水產養殖中,亞硝酸鹽濃度過高造成生物體中毒,嚴重死亡是很常見的問題。有研究證實,高濃度的亞硝酸鹽會使魚體內的活性氧族群(Reactive oxygen species, ROS)上升,導致水生生物的死亡。也有研究證實錳超氧化物歧化酶可清除ROS保護細胞抵抗各種氧化壓力。為了提高水生生物抗亞硝酸耐受性,本研究利用細胞穿透肽TAT將錳超氧化物歧化酶送入魚鰭細胞(GF-1)內達到保護細胞對抗ROS所造成的損害。本研究建構石斑魚錳超氧化物歧化酶 (Manganese-dependent superoxide dismutase ,MnSOD)與含穿透肽的TAT-MnSOD基因,利用大腸桿菌BL21表現此兩種蛋白,接著以西方墨點法確定蛋白質表現,並以SDS-PAGE確定TAT-MnSOD的可溶性 (42± 1.2%)明顯高於MnSOD (0.01± 0.3%),我們利用Nickel column純化蛋白質,並確認兩種蛋白皆保有SOD活性;將不同濃度的TAT-MnSOD、MnSOD處理GF-1細胞1小時後,以西方點墨法確認TAT-SOD較MnSOD有效率地進入細胞內。另外,我們發現GF-1細胞內的ROS會隨著NaNO2濃度的上升而上升,而細胞的活存率卻隨著NaNO2濃度的上升而下降。我們證實TAT-MnSOD能進入細胞內清除NaNO2所造成的ROS,並保護GF-1細胞對抗NaNO2所造成的傷害而提高細胞活存率。另外,我們將斑馬魚預先處理 TAT-MnSOD,進行亞硝酸鹽毒性測試,發現TAT-MnSOD處理較未經處理的組別在短時間內能提高斑馬魚的活存率。成功證實 TAT-MnSOD 能有效提升斑馬魚對抗亞硝酸鹽緊迫之活存率,未來若能有效應用於水產養殖業將對台灣水產養殖業有極大貢獻。
In aquaculture, nitrite concentration too high to cause serious death is a very common problem. It had been demonstrated that high concentrations of nitrite will increase active oxygen species (Reactive oxygen species, ROS) in fish and lead it to death. Studies have also confirmed that manganese superoxide dismutase (MnSOD) can remove ROS to protect cells against various oxidative stress. To enhance nitrite tolerance to aquatic organisms, we constructed cell penetrable MnSOD by fused cell penetrating peptide TAT and grouper MnSOD (TAT-SOD) to remove ROS induced by nitrite to protect cells. In this study, Manganese superoxide dismutase (MnSOD) and TAT-MnSOD fusion protein expression was exam by western blot and protein solubility of TAT-MnSOD (67 ± 3.1%) was significantly higher than that of MnSOD (11 ± 0.8%) by SDS-PAGE. Then we purified the protein by Nickel column and confirmed that both proteins had SOD activity. We demonstrated that TAT-MnSOD could efficiency transduce into GF-1 cells not MnSOD after protein treatment for 1hr by western blot. In addition, we found that ROS was increased with NaNO2 concentration in GF-1 cells, while the GF-1 cells survival rate was decreased with NaNO2 concentration. Finally, we demonstrated that TAT-MnSOD could entry cells and removed ROS induced by NaNO2 in cells to decrease the cell mortality caused by NaNO2. In addition, we demonstrated TAT-MnSOD protect zebrafish against the urgency of nitrite in vivo and TAT-MnSOD could effectively enhance the survival rate of aquatic organisms against nitrite toxic.
摘要 IV
Abstract VI
致謝 VIII
目錄 X
壹、 前言 1
材料與方法 10
一、 實驗材料 10
生物材料 10
藥品與儀器 10
二、 實驗方法 18
(一) 石斑魚RNA萃取及cDNA的製備 18
(二) 基因建構 19
(三)小量質體製備 21
(四)西方點墨法測試蛋白質表現 22
(五)蛋白質可溶性測試 23
(六)蛋白質純化 25
(七)酵素活性分析 26
(八) 重組融合蛋白質進入細胞的效能分析 27
(九) NaNO2影響GF-1細胞ROS的產生 28
(十) NaNO2 對GF-1細胞的毒性測試 29
(十一) 融合蛋白保護細胞測試 29
(十二)細胞活存率測試 30
(十三) NaNO2 對斑馬魚的毒性測試 31
(十四) TAT-MnSOD保護斑馬魚對抗NaNO2的毒性測試 31
参、結果 33
一、 pET22b-TAT-MnSOD及pET22b-MnSOD之 基因建構 33
二、 以西方點墨法測試TAT-MnSOD及MnSOD的蛋白質表現 33
三、 TAT-MnSOD及MnSOD之蛋白質可溶性 34
四、 TAT -MnSOD及MnSOD蛋白質之純化分析 35
五、 超氧化物岐化酶活性測試 35
六、 蛋白質進入細胞測試 35
七、 NaNO2對GF-1細胞內ROS的影響 36
八、 NaNO2對GF-1細胞的毒性測試及細胞型態變化 37
九、 分析TAT-MnSOD及MnSOD能降低細胞中因NaNO2誘發產生的ROS 37
十、 TAT-MnSOD及MnSOD保護GF-1細胞對抗NaNO2的毒性測試 38
十一、 NaNO2對斑馬魚的毒性測試 39
十二、 TAT-MnSOD保護斑馬魚對抗NaNO2的毒性測試 39
討論 41
伍、圖表 49
陸、參考文獻 63
柒、附錄 72




1.Holt, G. J., & Arnold, C. R. (1983). Effects of ammonia and nitrite on growth and survival of red drum eggs and larvae. Transactions of the American Fisheries Society, 112(2B), 314-318.Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity
2.Williams, E., & Eddy, F. (1986). Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 156(6), 867-872.
3.Sun, S., Zhu, J., Ge, X., Zhang, C., Miao, L., & Jiang, X. (2014). Cloning and expression analysis of a heat shock protein 90 β isoform gene from the gills of wuchang bream (megalobrama amblycephala yih) subjected to nitrite stress. Gen Mol Res, 14, 3036-3051.
4.Park, I., Lee, J., Hur, J., Song, Y., Na, H. C., & Noh, C. H. (2007). Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in Dark‐banded rockfish, sebastes inermis. Journal of the World Aquaculture Society, 38(2), 188-199.
5.Guo, H., Xian, J., Li, B., Ye, C., Wang, A., Miao, Y., Liao, S., , Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 157(2013)366-371.
6.Glover, D.J., Lipps, H.J., Jans, D.A., , Towards safe, non-viral therapeutic gene expression in humans, Nature Reviews.Genetics. 6(2005)299.
7.Harman, D. (1992). Free radical theory of aging. Mutation Research/DNAging, 275(3-6), 257-266. UV-induced reactive oxygen species in photocarcinogenesis and photoaging.
8.Scharffetter-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R., & Wenk, J. (1997). UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biological Chemistry, 378(11), 1247-1258.
9.Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., Nel, A., , Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ. Health Perspect. 111(2003)455-460.
10.Jena, N. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503-517.
11.Fujita, T. (2002). Formation and removal of reactive oxygen species, lipid peroxides and free radicals, and their biological effects. Journal-Pharmaceutical Society of Japan, 122(3), 203-218.
12.Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64(1), 97-112.
13.Kayatekin, C., Zitzewitz, J. A., & Matthews, C. R. (2008). Zinc binding modulates the entire folding free energy surface of human cu, zn superoxide dismutase. Journal of Molecular Biology, 384(2), 540-555.
14.Carlioz, A., & Touati, D. (1986). Isolation of superoxide dismutase mutants in escherichia coli: Is superoxide dismutase necessary for aerobic life? The EMBO Journal, 5(3), 623-630.
15.Li, Y., Huang, T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., , Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nat. Genet. 11(1995)376-381.
16.Kinnula, V. L., & Crapo, J. D. (2004). Superoxide dismutases in malignant cells and human tumors. Free Radical Biology and Medicine, 36(6), 718-744.
17.Zelko, I.N., Mariani, T.J., Folz, R.J., 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine 33, 337-349.
18.Dowling, E., Chander, C., Claxson, A., Lillie, C., & Blake, D. (1993). Assessment of a human recombinant manganese superoxide dismutase in models of inflammation. Free Radical Research Communications, 18(5), 291-298.
19.Marklund, S. L. (1982). Human copper-containing superoxide dismutase of high molecular weight. Proceedings of the National Academy of Sciences of the United States of America, 79(24), 7634-7638.
20.Fattman, C. L., Schaefer, L. M., & Oury, T. D. (2003). Extracellular superoxide dismutase in biology and medicine. Free Radical Biology and Medicine, 35(3), 236-256.
21.Glover, D. J., Lipps, H. J., & Jans, D. A. (2005). Towards safe, non-viral therapeutic gene expression in humans. Nature Reviews.Genetics, 6(4), 299.
22.Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55(6), 1189-1193.
23.Vives, E., Brodin, P., & Lebleu, B. (1997). A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 272(25), 16010-16017.
24.Schwarze, S. R., Ho, A., Vocero-Akbani, A., & Dowdy, S. F. (1999). In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science (New York, N.Y.), 285(5433), 1569-1572. Richard et al ( 42 ) studied the mechanisms of Tat and polyarginine translocation using fluorescence microscopy in living cells.
25.Vives, E., Brodin, P., & Lebleu, B. (1997). A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 272(25), 16010-16017.
26.Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., ... & Lebleu, B. (2003). Cell-penetrating peptides A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 278(1), 585-590.
27.Tunnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F., & Cardoso, M. C. (2006). Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 20(11), 1775-1784.
28.Mueller, J., Kretzschmar, I., Volkmer, R., & Boisguerin, P. (2008). Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chemistry, 19(12), 2363-2374.
29.Chen, X., Liu, S., Rao, P., Bradshaw, J., & Weller, R. (2016). Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin. European Journal of Pharmaceutics and Biopharmaceutics, 107, 286-294.
30.Wang, H., Yang, W., Shen, G., Zhang, J., Lv, W., Ji, B., Meng, C., , Protein transduction domain of transactivating transcriptional activator fused to outer membrane protein K of Vibrio parahaemolyticus to vaccinate marbled eels (Anguilla marmorata) confers protection against mortality caused by V. parahaemolyticus, Microbial Biotechnology. 8(2015)673-680.
31.Boisen, A., Amstrup, J., Novak, I., & Grosell, M. (2003). Sodium and chloride transport in soft water and hard water acclimated zebrafish (danio rerio). Biochimica Et Biophysica Acta (BBA)-Biomembranes, 1618(2), 207-218.
32.Mayden, R.L., Tang, K.L., Conway, K.W., Freyhof, J., Chamberlain, S., Haskins, M., Schneider, L., Sudkamp, M., Wood, R.M., Agnew, M., , Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 308(2007)642-654.
33."Danio rerio". Nonindigenous Aquatic Species. United States Geological Survey. June 14, 2013. Retrieved July 3, 2013..
34.Tomasso, J. (2012). Environmental nitrite and aquaculture: A perspective. Aquaculture International, 20(6), 1107-1116.
35.Madison, B. N., & Wang, Y. S. (2006). Haematological responses of acute nitrite exposure in walleye (sander vitreus). Aquatic Toxicology, 79(1), 16-23.
36.Xian, J., Wang, A., Chen, X., Gou, N., Miao, Y., Liao, S., Ye, C., , Cytotoxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis, Aquaculture. 317(2011)240-244.
37.Simmons, A. E., Karimi, I., Talwar, M., & Simmons, T. W. (2012). Effects of nitrite on development of embryos and early larval stages of the zebrafish (danio rerio). Zebrafish, 9(4), 200-206.
38.Ansari, F. A., Ali, S. N., & Mahmood, R. (2015). Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes.Toxicology in Vitro, 29(7), 1878-1886.
39.Voslářová, E., Pištěková, V., Svobodova, Z., & Bedáňová, I. (2008). Nitrite toxicity to danio rerio: Effects of subchronic exposure on fish growth. Acta Veterinaria Brno, 77(3), 455-460.
40.Erkekoğlu, P., & Baydar, T. (2010). Effect of allyl isothiocyanate (AITC) in both nitrite-and nitrosamine-induced cell death, production of reactive oxygen species, and DNA damage by the single-cell gel electrophoresis (SCGE): Does it have any protective effect on HepG2 cells? International Journal of Toxicology, 29(3), 305-312.
41.Oberley, L., Lindgren, A., Baker, S., & Stevens, R. (1976). Superoxide ion as the cause of the oxygen effect. Radiation Research, 68(2), 320-328..
42.Peterman, E. M., Sullivan, C., Goody, M. F., Rodriguez-Nunez, I., Yoder, J. A., & Kim, C. H. (2015). Neutralization of mitochondrial superoxide by superoxide dismutase 2 promotes bacterial clearance and regulates phagocyte numbers in zebrafish. Infection and Immunity, 83(1), 430-440.
43.Guo, G., Yan-Sanders, Y., Lyn-Cook, B.D., Wang, T., Tamae, D., Ogi, J., Khaletskiy, A., Li, Z., Weydert, C., Longmate, J.A., Huang, T.T., Spitz, D.R., Oberley, L.W., Li, J.J., , Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses, Mol. Cell. Biol. 23(2003)2362-2378.
44.Heitz, F., Morris, M. C., & Divita, G. (2009). Twenty years of cell‐penetrating peptides: From molecular mechanisms to therapeutics. British Journal of Pharmacology, 157(2), 195-206.
45.Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J., Ryong Lee, B., ... & Choi, S. Y. (2000). Transduction of Cu, Zn‐superoxide dismutase mediated by an HIV‐1 Tat protein basic domain into mammalian cells. FEBS letters, 485(2-3), 163-167.
46.Luangwattananun, P., Yainoy, S., Eiamphungporn, W., Songtawee, N., Bülow, L., Ayudhya, C.I.N., Prachayasittikul, V., , Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities, Int. J. Biol. Macromol. 85(2016)451-459.
47.Cappelletti, P., Binda, E., Tunesi, M., Albani, D., Giordano, C., Molla, G., Pollegioni, L., , Recombinant human Tat-Hsp70-2: A tool for neuroprotection, Protein Expr. Purif.(2016).
48.Dong, G., Wang, C., Wu, Y., Cong, J., Cheng, L., Wang, M., Zhao, P., Tang, L., Zhang, C., Wu, K., , Tat peptide-mediated soluble expression of the membrane protein LSECtin-CRD in Escherichia coli, PloS One. 8(2013)e83579.
49.Pias, E. K., Ekshyyan, O. Y., Rhoads, C. A., Fuseler, J., Harrison, L., & Aw, T. Y. (2003). Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. The Journal of Biological Chemistry, 278(15), 13294-13301.
50.Gu, Q., Feng, T., Cao, H., Tang, Y., Ge, X., Luo, J., Xue, J., Wu, J., Yang, H., Zhang, S., , HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD 1) protects skin cells from ionizing radiation, Radiation Oncology. 8(2013)253.
51.Eum, W.S., Choung, I.S., Li, M.Z., Kang, J.H., Kim, D.W., Park, J., Kwon, H.Y., Choi, S.Y., , HIV-1 Tat-mediated protein transduction of Cu, Zn-superoxide dismutase into pancreatic β cells in vitro and in vivo, Free Radical Biology and Medicine. 37(2004)339-349.
52.Pan, J., He, H., Su, Y., Zheng, G., Wu, J., Liu, S., Rao, P., , In Vivo Radioprotective Activity of Cell-Permeable Bifunctional Antioxidant Enzyme GST-TAT-SOD against Whole-Body Ionizing Irradiation in Mice, Oxidative Medicine and Cellular Longevity. 2017(2017).
53.Su, Y. C., Chiu, H. W., Hung, J. C., & Hong, J. R. (2014). Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis, 19(10), 1457-1470.
54.Lewis Jr, W.M., Morris, D.P., , Toxicity of nitrite to fish: a review, Trans. Am. Fish. Soc. 115(1986)183-195.
55.Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., , Oxidative stress and antioxidant defense, World Allergy Organization Journal. 5(2012)9.
56.Miao, L., Clair, D.K.S., , Regulation of superoxide dismutase genes: implications in disease, Free Radical Biology and Medicine. 47(2009)344-356.
57.Guo, Z., Peng, H., Kang, J., Sun, D., , Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications, Biomedical Reports. 4(2016)528-534.






QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊