跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/17 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳世璋
研究生(外文):Shi-Chang chen
論文名稱:變壓器回授低雜訊放大器與壓控震盪器之設計與實現
論文名稱(外文):Design and Implementation of Transformer Feedback LNA and VCO
指導教授:林佑昇林佑昇引用關係
指導教授(外文):Yo-Sheng Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:86
中文關鍵詞:變壓器回授低雜訊放大器壓控震盪器
外文關鍵詞:transformerfeedbackLNAVCO
相關次數:
  • 被引用被引用:1
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:1
隨著無線通訊市場的蓬勃發展,無線通訊晶片的需求也與日遽增。以往的射頻晶片主要是GaAs及Bipolar的製程,雖然這兩種製程在高頻有較好的特性,但是無法與CMOS的基頻電路整合為一個單晶片的系統,因此CMOS射頻電路開始受到廣大的重視及研究。
為了降低功率損耗,射頻電路操作在1V或低於1V的電壓是必須的。變壓器回授電路可以達成操作電壓的需求所以本論文針對此電路做研究。除此之外,兩個我與其他人合作的電感器也在本論文中完成。
Due to the booming development of the wireless communication, the demand of the RF IC is growing rapidly. The RF circuits are usually implemented in GaAs or Bipolar process. However, these two processes are not compatible to the typical CMOS process, which is used to implement the base band circuits. Thus, if the CMOS RF circuits can be realized, the whole receiving circuits can be integrated into a single chip, and then the cost will be cut down significantly.
In order to decrease power loss, RF circuits operate at voltages at or below 1V are required. Transformer feedback circuit can accomplish low supply voltage requirement so we research it in this thesis. Besides, two inductors that I co-work with others are also achieved in this thesis.
Contents

Chapter 1 Introduction……………………………1
1.1 Introduction…………………………………………………………………1
1.1.1 2.4GHz Frequency Bands…………………………………………2
1.1.2 5GHz Frequency Bands………………………………………………3
1.2 Organization of the Thesis…………………………………………………4
Chapter 2 Transformer……………………………5
2.1 Introduction…………………………………………………………………5
2.1.1 Numerous Type of RF Transformer Structure………………………5
2.2 Characteristic of RF Transformer…………………………………………9
2.2.1 Self-Inductance………………………………………………………9
2.2.2 Mutual Inductance…………………………………………………11
2.2.3 Maximum Available Gain .……………………………12
2.3 Four Port Differential Transformers…………………………………13
2.3.1 Device Measurement…………………………………15
2.3.2 Device De-Embedding………………………………………………17
2.3.2 Four Port Transformer Measurement Results………………………18
Chapter 3 Simulation by Sonnet…………………21
3.1 Calibration of Process Parameters by Inductor Characterization…………21
3.1.1 Metal Loss……………………………………………………22
3.1.2 Metal Conductivity & Metal Thickness…………………………23
3.1.3 Substrate Loss………………………………………………………24
3.1.4 Substrate Conductivity………………………………………………24
3.1.5 Calibration Results…………………………………………………25
3.2 Design Circuit with Transformer…………………………………………29
3.3 Post Simulation……………………………………………………………30
Chapter 4 Low Noise Amplifier…………………31
4.1 Scattering Parameters……………………………………………………32
4.2 Power Gain………………………………………………………………35
4.3 Noise Figure………………………………………………………………37
4.4 Linearity…………………………………………………………………40
4.5 Stability……………………………………………………………………45
4.6 Transformer Feedback LNA………………………………………………45
4.6.1 Introduction of Transformer Feedback LNA………………………46
4.6.2 Dual Transformers Feedback LNA…………………………………46
4.6.3 Transformers Simulation Results……………………………………49
4.6.4 Dual Transformers Feedback LNA Simulation Results……………50
4.6.5 Conclusions…………………………………………………………54
Chapter 5 Voltage-Controlled Oscillator 56
5.1 General Design Considerations……………………………………………56
5.2 Startup Condition…………………………………………………………58
5.3 LC-Tank VCO……………………………………………………………59
5.4 Phase Noise………………………………………………………………60
5.4.1 Leeson’s model……………………………………………………60
5.4.2 Ali Hajimiri’s model………………………………………………65
5.5 Transformer Feedback VCO………………………………………………70
5.5.1 Introduction of Transformer Feedback VCO………………………70
5.5.2 Transformer Simulation Results……………………………………72
5.5.3 VCO Simulation results……………………………………………73
5.5.4 Conclusions…………………………………………………………75
Chapter 6 Other Projects…………………………77
6.1 Metal of various widths in circular spiral inductor……………77
6.2 The optimum of variable inductor…………………………………79
Chapter 7 Conclusion……………………………82
Reference

[1]Jan Crols, Michiel Steyaert, “A fully Integrated 900 MHz CMOS Double Quadrature Downconverter,” ISSCC Digest of Technical Papers, pp. 136-137, Feb., 1995.
[2]Jan Craninckx and Michel S. J. Steyaert, “A 1.8-GHz CMOS low-phase-noise voltage controlled oscillator with prescaler,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1474–1482, December 1995.
[3]D. J. Cassan, and J. R. Long, “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18 m CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 427-435, March 2003.
[4]H. M. Greenhouse, “Design of planar rectangular micro electronic inductors,” IEEE Trans. Parts, Hybrids and Packaging, vol. PHP-10, no. 2, pp. 101–109, June 1974.
[5]J. N. Burghartz, D. C. Edelstein, M. Souyer, H. A. Ainspan, and K. A. Jenkins, “RF circuit aspects of spiral inductors on Silicon,” IEEE J. Solid-State Circuits, vol. 33, pp. 2028–2034, Dec. 1998.
[6]J. N. Burghartz, D. C. Edelstein, M. Souyer, H. A. Ainspan, and K. A. Jenkins, “Multilevel spiral inductors using VLSI interconnect technology,” IEEE Electron Device Lett., vol. 17, pp. 428–430, Sept. 1996.
[7]J. M. Lopez-Villegas, J. Samitier, C. Cane, and P. Losantos, “Improvement of the quality factor of RF integrated inductors by layout optimization,” in Proc. Int. Microwave Symp., June 1998, pp. 169–172.
[8]K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip spiral directional coupler,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 680–689, July 1981.
[9]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, June 1989, pp. 661–664
[10]H. J. Finlay, “U.K. patent application,” 8 800 115, 1985.
[11]M. W. Geen, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” in Proc. GaAs IC Symp., Oct. 1989, pp. 303–306.
[12]S. S. Mohan, C. P. Yue, M. del Mar Hershenson, S. S. Wong, and T. H. Lee, “Modeling and characterization of on-chip transformers,” in Proc. IEDM, Dec. 1998, pp. 531–534.
[13]W. Simbuerger, H.-D. Wohlmuth, and P. Weger, “A monolithic 3.7-W Silicon power amplifier with 59% PAE at 0.9 GHz,” in Proc. ISSCC, Feb. 1999, pp. 230–231.
[14]D. Feucht, Handbook of Analog Circuit Design. San Diego, CA: Academic, 1990, ch. 8.
[15]T.; Rejaei, B.; Burghartz, J.N.; “Substrate effects in monolithic RF transformers on silicon,” Microwave Theory and Techniques, IEEE Transactions on, pp. 377-383, Jan. 2002.
[16]F. Sischka, “Introduction of de-embedding of parasitic components,” HP High-Frequency Device Modeling Technology Workshop, May 1998.
[17]A. M. Niknejad and R. G. Meyer, Design, simulation and applications of inductors and transformers for Si RFIC, Kluwer, pp. 15-18, 2000.
[18]J. Zhao, W. Dai, R. C. Frye, and K. L. Tai, “Modeling and design considerations for embedded inductors in MCM-D,” IEEE International Conference on Multichip Modules, pp. 334-339, 1997.
[19]P. Orsatti, F. Piazza and Q. Huang, “A 20-mA-Receiver, 55-mA-Transmit, Single-Chip GSM Transceiver in 0.25-um CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 1869-1880, Dec 1999.
[20]B. Razavi, RF Microelectronics: Chapter 5, Transceiver Architecture, Prentice Hall Communication Engineering and Emerging Technology Series, 1997.
[21]T. H. Lee, The design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.
[22]Tajinder Manku, “Microwave CMOS – Devices and Circuits,” IEEE Custom Integrated Circuits Conference, 1998.
[23]Thomas H. Lee, ”The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998.
[24]Yu-Shun Huang, ”Design and Realization of 2.4GHz CMOS RF Front-end Receiving Circuits”, MS Thesis, NTU, Dept. of EE, June 2000.
[25]Guillermo Gonzales, ”Microwave Transistor Amplifiers: Analysis and Design”, second edition, Prentice Hall, 1997.
[26]R. Shahani, D. K. Shaeffer, and T. H. Lee, “A 12 mW wide dynamic range CMOS front-end for a portable GPS receiver,” IEEE J. Solid-State Circuits, vol. 32, pp. 2061–2070, Dec. 1997.
[27]J. Zhou and D. J. Allstot, “Monolithic transformers and their application n a differential CMOS low-noise amplifier,” IEEE J. Solid-State ircuits, vol. 33, pp. 2020–2027, Dec. 1998.
[28]F. Behbahani, J. C. Leete, Y. Kishigami, A. Roithmeier, K. Hoshino, and A. A. Abidi, “A 2.4-GHz low-IF receiver for wideband WLAN in .6-_m CMOS—Architecture and front-end,” IEEE J. Solid-State Circuits, vol. 35, pp. 1908–1916, Dec. 2000.
[29]R. Leroux, J. Janssens, and M. Steyaert, “A 0.8 dB ESD-protected 9 W CMOS LNA,” in IEEE Int. Solid-State Circuits (ISSCC) Dig. Tech. apers, Feb. 2001, pp. 410–411.
[30]van der Heijden, M.P.; de Vreede, L.C.N.; Burghartz, J.N., “On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match” IEEE J. Solid-State Circuits, vol. 39, pp. 1727 - 1736, Oct. 2004.
[31]D.B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, pp. 329-330, Feb. 1996.
[32]A. Hajimiri, and T. H. Lee, “A General of Phase Noise in Electrical Oscillator” IEEE J. Solid-State Circuits, vol. 33, NO. 2, pp. 179-194, Feb. 1998.
[33]A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Boston: Kluwer Academic Publishers, 1999.
[34]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, New York: Stanford University, 1998.
[35]A. Wagemans, P. Baltus, R. Dekker, A. Hoogstraate, H. Mass, A. Tombeur and J. van Sinderen, “A 3.5mW 2.5GHz Diversity Receiver and a 1.2mW 3.6GHz VCO in Silicon-On-Anything,” 1998 IEEE ISSCC Paper FP-16.3, San Francisco 1998

[36]Yuan-Kai Chu, Huey-Ru Chuang, “A fully integrated 5.8 GHz U-NII band 0.18-/spl mu/m CMOS VCO, ” Microwave and Wireless Components Letters, vol.13, NO. 7, July 2003 Page(s):287 - 289
[37]C.-M Hung and K. K. O., “A fully integrated 1.5-V 5.5GHz CMOS phase-locked loop,” IEEE J. Solid-State Circuit, vol. 37, No. 4, April 2002.
[38]S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-state Circuits, vol. 37, No. 8, Aug. 2002.
[39]Tae Youn Kim, Andrew Adams and Neil Weste,”High Performance SOI and Bulk CMOS 5GHz VCOs,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE , 8-10 June 2003, Page(s): 93 –96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊