跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建誠
研究生(外文):Chien-Cheng Chen
論文名稱:廢食用油的熱裂解
論文名稱(外文):THEMARL PYROLYSIS OF WASTE COOKING OIL
指導教授:陳泰祥
指導教授(外文):Tai-Shang Chen
口試委員:陳泰祥
口試委員(外文):Tai-Shang Chen
口試日期:2016-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:快速熱裂解廢食用油回收生質柴油
外文關鍵詞:fast pyrolysisRecycling of waste cooking oilbiodiesel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:706
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
生質能源的優勢包括技術較成熟、有商業化運轉能力與經濟效益較高等,且因使用材料為廢棄物,兼具廢棄物的回收處理與能源生產的雙重效益。而生質柴油相關製造技術,是目前熱門的研究主題。其中之一研究是將生質物質在無氧高溫環境中直接進行有機成分的熱分解,反應溫度及壓力通常介於650–800 K及0.1-0.5 MPa之間,主要產物有液態油、固態木炭及氣態化合物等,以做為燃料、化學品及溶劑等。生質油的快速熱解過程在缺氧的條件下,快速加熱到較高反應溫度,引發了大分子分解成小分子氣體和可凝性揮發分子以及少量焦炭產物,其中可凝性揮發分子被快速冷卻成可流動的液體,即為生質油或焦油。
本研究以一個大型固定床快速熱裂解反應器進行廢食用油之熱裂解反應,探討不同的溫度及進料流量變化對熱裂解反應的影響,也與以大豆油作為進料之結果比較。對熱裂解產物進行分析,包含熱重量分析、酸價、元素分析、密度及熱值等。結果發現固定床操作溫度在500℃、進料流量30g/min時為最佳操作條件,獲得到的生質油產率可達81.30%,再經過蒸餾後,各可以獲得23.60%的重油及72.61%的輕油組成。結果顯示廢食用油之熱裂解反應用以產生生質油,為一可行之廢油回收再利用之技術。
Biomass is a renewable energy with the advantageous of more technology, commercial operation ability and high economic efficiency. For the use of waste materials, both waste recycling and energy production can get double benefit. The biodiesel manufacturing technology and its related researches are currently a highlight research topic. One example of these studies is to thermally decompose biomass material at a high temperature with oxygen free environment. After direct thermal decomposition of the organic component for the reaction temperature and pressure is generally between 650-800 K and 0.1 - 0.5 MPa, the major products include liquid oil, solid charcoal and gaseous compounds, which can be used as fuel, chemicals and solvents. Fast pyrolysis of biomass oil under oxygen free conditions with rapidly heated to a high temperature reaction can decompose large molecules into smaller molecules, including gas and condensable volatile molecules as well as a small amount of coke products. The condensable volatile molecules can be rapidly transferred into liquid as biomass oil.

In this study, a pilot-scale fixed bed reactor for fast pyrolysis of waste cooking oil was designed and used. The influence on thermal cracking reaction with different operation temperature and feed flow rate were investigated. The results of fast pyrolysis were also compared with soybean oil as a feed material. The pyrolysis products analysis included thermal gravimetric analysis (TGA), acid value, elemental analysis (EA), density and calorific value. It was found the operating temperature 500℃ and the feed flow rate 30 g/min could get the best operating results in a continuous fixed bed reactor. The yield of bio-oil is 81.30% under the optimal operation. After distillation of the liquid product, the composition of 23.60% of heavy oil and 72.61% of light fraction can be obtained. The results showed that the thermal cracking reaction of waste cooking oil to produce biodiesel is a promising technology for waste oil recycle.
目 錄
致 謝 I
Abstract III
摘 要 V
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 12
第二章 文獻回顧 13
2.1 生質柴油製法 13
2.1.1 快速裂解 13
2.1.2 轉脂化 15
2.1.3 微乳化 17
2.2 裂解油之研究 18
2.2.1 廢魚油 18
2.2.2 玉米稈 19
2.2.3 污泥 19
2.3 影響廢食用油快速熱裂解可能因素 20
2.3.1 溫度 20
2.3.2 進料量 21
2.3.3 硬脂酸 22
2.4 分析 22
2.4.1 酸價 22
2.4.2 熱值 23
2.4.3 動黏度 24
2.4.4 元素分析 26
2.4.5 熱重量分析 28
2.4.6 蒸餾 28
2.4.7 氣相色譜法-質譜聯用 29
第三章 實驗 30
3.1 實驗設備 30
3.2 實驗藥品 34
3.3 實驗步驟 36
3.3.1 初步測試 36
3.3.2 實驗配置 38
第四章 結果與討論 44
4.1 初步測試結果 44
4.1.1 裂解油的產率 44
4.1.2 蒸餾後的產率 45
4.2 快速裂解實驗 49
4.2.1 不同原油之影響 49
4.2.2 不同固定床溫度之影響 51
4.2.3 不同進料量之影響 54
4.2.4 不同原油酸價之影響 57
4.3 最佳操作條件產物分析 60
第五章 結論 64
參考文獻 66











圖目錄
圖1.1 各國廢食用油產量[1] 2
圖1.2 廢食用油流向分析圖[2] 4
圖1.3 全球生質燃料產量趨勢(分區域別)[3] 6
圖1.4 2010~2020年全球生質燃料產量歷史趨勢與推估[4] 8
圖1.5 飽和脂肪酸(a)和不飽和脂肪酸(b) 9
圖2.1 三酸甘油脂之裂解反應機構[18] 14
圖2.2轉脂化化學反應過程 16
圖2.3不同SGFR的產率 21
圖3.1實驗設置圖 32
圖3.2廢油脂連續快速熱裂解設備 33
圖3.3廢食用油 35
圖4.1廢食用油裂解之產物分布圖 46
圖4.2廢食用油(WCO)、裂解油(PO)、生質汽油(BGO)及生質柴油(BDO)的熱重量分析圖 47
圖 4.3裂解油進行再蒸餾之產品組成圖 48
圖 4.4不同原油所產出的裂解油的熱重量分析圖 50
圖4.5不同固定床溫度(450、500、550℃)之裂解產率圖 52
圖4.6不同固定床溫度(450、500、550℃)的熱重量分析圖 53
圖4.8不同進料量(10、30、40g/min)之裂解產率圖 55
圖4.9不同進料量(10、30、40g/min)的熱重量分析圖 56
圖4.11不同原油酸值的裂解油(1.3、11.65 mg KOH/g)之裂解產率圖 58
圖4.12不同原油酸值的裂解油(1.3、11.65 mg KOH/g)的熱重量分析圖 59
圖4.13生質汽油及市售汽油之氣相色譜圖 62
圖4.14生質柴油及市售柴油之氣相色譜圖 63













表目錄
表1.1 廢食用油組成及物理特性 11
表2.1 生質柴油及柴油黏度 25
表2.2廢食用油、裂解油與市售汽柴油元素分析比較 27
表3.1實驗設備、型號與提供廠商 30
表3.2實驗藥品與提供廠商 34
表4.1廢食用油、裂解油與市售汽柴油性質比較 61
參考文獻
[1] W. N. A. W. Azahar, M. Bujang, R. P. Jaya. M. R. Hainin, A. Mohamed, N. Ngadi, D. S. Jayanti, The potential of waste cooking oil as bio-asphalt for alterbative binder - An overview, Jurnal Teknologi, 78 (2016) 111-116.
[2] 嘉義縣環境保護局, 廢食用油回收, http://www.cyepb.gov.tw/Monitor/?PID=178&MID=-3
[3] BP, BP Statistical Review of World Energy, (2015).
[4] IEA, Medium-Term Renewable Energy Market Report 2015, International Energy Agency, (2015).
[5] Y. Xue, W. Zhao, P. Ma, Z. Zhao, G. Xu, C. Yang, H. Chen, H. Lin, Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel, Fuel, 177 (2016) 46-52.
[6] V. R. Wiggers, J. A. Wisniewski, Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant, Fuel, 88 (2009) 2125-2141.
[7] R. K. Sharma, N. N. Bakhshi, Upgrading of tall oil to fuels and chemicals over HZSM-5 catalyst using various diluents, Can. J. Chem. Eng, 69 (1991) 1082-1086.
[8] S. O. Yean, R. Zakaria, A. R. Mohamed, S. Bhatia, Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking, Applied Catalysis A: General, 274 (2004) 15-23.
[9] P. Tamunaidu, S. Bhatia, Catalytic cracking of palm oil for the production of biofuels: Optimization studies, Bioresource Technology, 98 (2007) 3593-3601.
[10] K. V. Padmaja, N. Atheya, A. K. Bhatnagar, Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking, Biomass and Bioenergy, 33 (2009) 1664-1669.
[11] L. Li, C. Edward, R. Jeffrey, L. M. Jonathan, W. Devin, Catalytic Hydrothermal Conversion of Triglycerides to Non-ester Biofuels, Energy Fuels, 24 (2010) 1305-1315.
[12] J.A. Melero, M.M. Clavero, G. Calleja, A. Garcia, R. Miravalles, T. Galindo, Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil, Energy & Fuels 24 (2010) 707-717.
[13] A. Adebanjo, G. K. Mangesh, K. D. Ajay, N. B. Narendra, Pyrolysis of Waste Fryer Grease in a Fixed-Bed Reactor, Engery Fuels, 21 (2007) 828-835.
[14] A. O. Adebanjo, A. K. Dalai, N. N. Bakhshi, Production of Diesel-Like Fuel and Other Value-Added Chemicals from Pyrolysis of Animal Fat, Energy Fuels, 19 (2005) 1735-1741.
[12] J.A. Melero, M.M. Clavero, G. Calleja, A. Garcia, R. Miravalles, T. Galindo, Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil, Energy & Fuels 24 (2010) 707-717.
[15] A. Osmont, L. Catoire, I. Gokalp, M. T. Swihart, Thermochemistry of CC and CH bond breaking in fatty acid methyl esters, Energy Fuels, 21 (2007) 2027-2032.
[16] A. Osmont, L. Catoire, I. Gokalp, Thermochemistry of methyl and ethyl esters from vegetable oils, International Journal of Chemical Kinetics, 39 (2007) 481-491.
[17] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Thermal cracking of canola oil: reaction products in the presence and absence of steam, Energy Fuels, 10 (1996) 1150-1162.
[18] A. W. Schwab, G. J. Dykstra, E. Selke, S. C. Sorenson, E. H. Pryde, Diesel fuel from thermal-decomposition of soybean oil, JAOCS, 65 (1988) 1781-1786
[19] K. Maeda, H. Kuramochi, T. Fujimoto, Y. Asakuma, K. Fukui, M. Osako, N. Nakamura, S. Sakai, Phase equilibrium of biodiesel compounds for the trioleinpalmitic acid-methanol system with dimethyl ether as cosolvent, J. Chem. Eng. Data, 53 (2008) 973-977.
[20] A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Renewable and Sustainable Energy Reviews, 4 (2000) 111-133.
[21] F. Ma, M. A. Hanna, Biodiesel production: a review, Bioresource Technology, 70 (1999) 1-15.
[22] J. M. Encinar, J. F. González, A. Rodríguez-Reinares, Ethanolysis of used frying oil. Biodiesel preparation and characterization, Fuel Processing Technology, 88 (2007) 513-522.
[23] M. G. Kulkami, A. K. Dalai, N. N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive, Bioresource Technology, 98 (2007) 2027-2033.
[24] A. W. Schwab, M. O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils, Fuel, 66 (1987) 1372-1378.
[25] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and aqueous alcohol with l-butanol surfactant as alternative fuel for diesel engines, U.S. Patent 4526586 (1985).
[26] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and aqueous alcohol with trialkylamine surfactant as alternative fuel for diesel engines, U.S. Patent 4453267 (1984).
[27] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and lower alcohol with octanol surfaciant as alternative fuel for diesel engines, U.S. Patent 4557734 (1985).
[28] C. Attaphong, L. Do, D. A. Sabatini, Vegetable oil-based microemulsions using carboxylate based extended surfactants and their potential as an alternative renewable biofuel, Fuel, 94 (2012) 606-613.
[29] C. Attaphong, D. A. Sabatini, Phase behaviors of vegetable oil-based microemulsion fuels: the effects of temperatures, surfactants, oils, and water in ethanol, Energy Fuels, 27 (2013) 6773-6780.
[30] L. D. Do, V. Singh, L. Chen, T. C. G. Kibbey, S. R. Gollahalli, D. A. Sabatini, Algae, canola, or palm oilsddiesel microemulsion fuels: phase behaviors, viscosity, and combustion properties, Int. J. Green Energy, 8 (2011) 748-767.
[31] Y. C. Chang, W. J. Lee, S. L. Lin, L. C. Wang, Green energy: water-containing acetone-butanol-ethanol diesel blends fueled in diesel engines, Appl. Energy 109, (2013) 182-191.
[32] FAO – Food and Agriculture Organization, The state of world fisheries and aquaculture, Rome, (2006).
[33] FAO – Food and Agriculture Organization, Food outlook, global market analysis, Rome, (2008).
[34] L. F. Arruda, R. Borghesi, M. Oetterer, Use fish waste as silage – a review, Brazilian Archives of Biology and Technology, 50 (2007) 879-86.
[35] A. Wisniewski Jr., V.R. Wiggers, E. L. Simionatto, H. F. Meier, A. A. C. Barros, L. A. S. Madureira, Biofuels from waste fish oil pyrolysis: Chemical composition, Fuel, 89 (2010) 563-568.
[36] S. J. Oh, G. G. Choi, J. S. Kim, Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural, Energy, 88 (2015) 697-702.
[37] M. F. Gómez-Rico, R. Font, A. Fullana, I. Martín-Gullón, Thermogravimetric studyof different sewage sludges and their relationship with the nitrogen content, J.Anal. Appl., Pyrolysis 74 (2005) 421-428.
[38] E. Kristensen, Characterization of biogenic organic matter by stepwise thermo-gravimetry (STG), Biogeochemistry, 9 (1990) 135-159.
[39] K. K. Pandey, A. J. Pitman, FTIR studies of the changes in wood chemistry fol-lowing decay by brown-rot and white-rot fungi, Int. Biodeterior. Biodegrad. 52 (2003) 151-160.
[40] X. Huang, J. P. Cao, P. Shi, X. Y. Zhao, X. B. Feng, Y. P. Zhao, X. Fan, X. Y. Wei, T. Takarada, Influences of Pyrolysis Conditions in the Production and Chemical Composition of the Bio-Oils from Fast Pyrolysis of Sewage Sludge, Journal of Analytical and Applied Pyrolysis, 110 (2014) 353-362.
[41] C. Paenpong, A. Pattiya, Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass, Journal of Analytical and Applied Pyrolysis, 119 (2016) 40-51.
[42] R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, S. R. A. Kersten, Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units, Ind. Eng. Chem. Res., 49 (2009) 1160-1168.
[43] A. V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of biomass, Organic Geochemistry, 30 (1999) 1479-1493.
[44] K. D. Maher, K. M. Kirkwood, M. R. Gray, D. C. Bressler, Pyrolytic decarboxylation and cracking of stearic acid, Industrial & Engineering Chemistry Research, 47 (2008) 5328-5336.
[45] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Thermal cracking of canola oil: reaction products in the presence and absence of steam, Energy Fuels, 10 (1996) 1150-1162.
[46] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution, Fuel Processing Technology, 51 (1997) 101-125.
[47] A. O. Adebanjo, A. K. Dalai, N. N. Bakhshi, Production of diesel-like fuel and other value-added chemicals from pyrolysis of animal fat, Energy Fuels, 19 (2005) 1735-1741.
[48] A. Kubatova, J. St'avova, W. S. Seames, Y. Luo, S.M. Sadrameli, M. J. Linnen, G. V. Baglayeva, I. P. Smoliakova, E. I. Kozliak, Triacylglyceride thermal cracking: pathways to cyclic hydrocarbons, Energy Fuels, 26 (2012) 672-685.
[49] S. H. Beis, Ö. Onay, Ö. M. Koçkar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions, Renewable Energy, 26 (2002) 21-32.
[50] D. Ozcimen, F. Karaosmanoglu, Production and characterization of bio-oil and biochar from rapeseed cake, Renew Energy, 29 (2004) 779-787.
[51] T. J. Buckley, Calculation of higher heating values of biomass materials and waste components from elemental analyses, Resources Conservation and Recycling, 5 (1991) 329-341
[52] M. Gülüm, A. Bilgin, Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends, Fuel Processing Technology, 149 (2016) 121-130.
[53] J. S. Chang, J. C. Cheng, T. R. Ling, J. M. Chern, G. B. Wang, T. C. Chou, C. T. Kuo, Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process, 000(2016) 1-11
[54] T. V. Lee, S. R. Beck, A new integral approximation formula for kinetic analysis of nonisothermal TGA data, AIChE. J., 30 (1984) 517-519.
[55] A. W. Coats, J. P. Redfern, Thermogravimetric Analysis: A Review, Analyst. 88 (1963) 906–924.
[56] A. Ergudenler, A. E. Ghaly, Determination of reaction kinetics of wheat straw using thermogravimetric analysis, Appl Biochem Biotechnol, 34–35 (1992) 75–81.
[57] A. S. Bining, B. M. Jenkins, Thermochemical reaction kinetics for rice straw from an approximate integral technique, In: ASAE Paper No. 92–6029, (1992).
[58] H. Tian, C. Li, C. Yang, H. Shan, Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins, Chinese Journal of Chemical Engineering, 16 (2008) 394-400
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top