|
參考文獻 [1] W. N. A. W. Azahar, M. Bujang, R. P. Jaya. M. R. Hainin, A. Mohamed, N. Ngadi, D. S. Jayanti, The potential of waste cooking oil as bio-asphalt for alterbative binder - An overview, Jurnal Teknologi, 78 (2016) 111-116. [2] 嘉義縣環境保護局, 廢食用油回收, http://www.cyepb.gov.tw/Monitor/?PID=178&MID=-3 [3] BP, BP Statistical Review of World Energy, (2015). [4] IEA, Medium-Term Renewable Energy Market Report 2015, International Energy Agency, (2015). [5] Y. Xue, W. Zhao, P. Ma, Z. Zhao, G. Xu, C. Yang, H. Chen, H. Lin, Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel, Fuel, 177 (2016) 46-52. [6] V. R. Wiggers, J. A. Wisniewski, Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant, Fuel, 88 (2009) 2125-2141. [7] R. K. Sharma, N. N. Bakhshi, Upgrading of tall oil to fuels and chemicals over HZSM-5 catalyst using various diluents, Can. J. Chem. Eng, 69 (1991) 1082-1086. [8] S. O. Yean, R. Zakaria, A. R. Mohamed, S. Bhatia, Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking, Applied Catalysis A: General, 274 (2004) 15-23. [9] P. Tamunaidu, S. Bhatia, Catalytic cracking of palm oil for the production of biofuels: Optimization studies, Bioresource Technology, 98 (2007) 3593-3601. [10] K. V. Padmaja, N. Atheya, A. K. Bhatnagar, Upgrading of Candelilla biocrude to hydrocarbon fuels by fluid catalytic cracking, Biomass and Bioenergy, 33 (2009) 1664-1669. [11] L. Li, C. Edward, R. Jeffrey, L. M. Jonathan, W. Devin, Catalytic Hydrothermal Conversion of Triglycerides to Non-ester Biofuels, Energy Fuels, 24 (2010) 1305-1315. [12] J.A. Melero, M.M. Clavero, G. Calleja, A. Garcia, R. Miravalles, T. Galindo, Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil, Energy & Fuels 24 (2010) 707-717. [13] A. Adebanjo, G. K. Mangesh, K. D. Ajay, N. B. Narendra, Pyrolysis of Waste Fryer Grease in a Fixed-Bed Reactor, Engery Fuels, 21 (2007) 828-835. [14] A. O. Adebanjo, A. K. Dalai, N. N. Bakhshi, Production of Diesel-Like Fuel and Other Value-Added Chemicals from Pyrolysis of Animal Fat, Energy Fuels, 19 (2005) 1735-1741. [12] J.A. Melero, M.M. Clavero, G. Calleja, A. Garcia, R. Miravalles, T. Galindo, Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil, Energy & Fuels 24 (2010) 707-717. [15] A. Osmont, L. Catoire, I. Gokalp, M. T. Swihart, Thermochemistry of CC and CH bond breaking in fatty acid methyl esters, Energy Fuels, 21 (2007) 2027-2032. [16] A. Osmont, L. Catoire, I. Gokalp, Thermochemistry of methyl and ethyl esters from vegetable oils, International Journal of Chemical Kinetics, 39 (2007) 481-491. [17] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Thermal cracking of canola oil: reaction products in the presence and absence of steam, Energy Fuels, 10 (1996) 1150-1162. [18] A. W. Schwab, G. J. Dykstra, E. Selke, S. C. Sorenson, E. H. Pryde, Diesel fuel from thermal-decomposition of soybean oil, JAOCS, 65 (1988) 1781-1786 [19] K. Maeda, H. Kuramochi, T. Fujimoto, Y. Asakuma, K. Fukui, M. Osako, N. Nakamura, S. Sakai, Phase equilibrium of biodiesel compounds for the trioleinpalmitic acid-methanol system with dimethyl ether as cosolvent, J. Chem. Eng. Data, 53 (2008) 973-977. [20] A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Renewable and Sustainable Energy Reviews, 4 (2000) 111-133. [21] F. Ma, M. A. Hanna, Biodiesel production: a review, Bioresource Technology, 70 (1999) 1-15. [22] J. M. Encinar, J. F. González, A. Rodríguez-Reinares, Ethanolysis of used frying oil. Biodiesel preparation and characterization, Fuel Processing Technology, 88 (2007) 513-522. [23] M. G. Kulkami, A. K. Dalai, N. N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive, Bioresource Technology, 98 (2007) 2027-2033. [24] A. W. Schwab, M. O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils, Fuel, 66 (1987) 1372-1378. [25] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and aqueous alcohol with l-butanol surfactant as alternative fuel for diesel engines, U.S. Patent 4526586 (1985). [26] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and aqueous alcohol with trialkylamine surfactant as alternative fuel for diesel engines, U.S. Patent 4453267 (1984). [27] A. W. Schwab, E. H. Pryde, Microemulsions from vegetable oil and lower alcohol with octanol surfaciant as alternative fuel for diesel engines, U.S. Patent 4557734 (1985). [28] C. Attaphong, L. Do, D. A. Sabatini, Vegetable oil-based microemulsions using carboxylate based extended surfactants and their potential as an alternative renewable biofuel, Fuel, 94 (2012) 606-613. [29] C. Attaphong, D. A. Sabatini, Phase behaviors of vegetable oil-based microemulsion fuels: the effects of temperatures, surfactants, oils, and water in ethanol, Energy Fuels, 27 (2013) 6773-6780. [30] L. D. Do, V. Singh, L. Chen, T. C. G. Kibbey, S. R. Gollahalli, D. A. Sabatini, Algae, canola, or palm oilsddiesel microemulsion fuels: phase behaviors, viscosity, and combustion properties, Int. J. Green Energy, 8 (2011) 748-767. [31] Y. C. Chang, W. J. Lee, S. L. Lin, L. C. Wang, Green energy: water-containing acetone-butanol-ethanol diesel blends fueled in diesel engines, Appl. Energy 109, (2013) 182-191. [32] FAO – Food and Agriculture Organization, The state of world fisheries and aquaculture, Rome, (2006). [33] FAO – Food and Agriculture Organization, Food outlook, global market analysis, Rome, (2008). [34] L. F. Arruda, R. Borghesi, M. Oetterer, Use fish waste as silage – a review, Brazilian Archives of Biology and Technology, 50 (2007) 879-86. [35] A. Wisniewski Jr., V.R. Wiggers, E. L. Simionatto, H. F. Meier, A. A. C. Barros, L. A. S. Madureira, Biofuels from waste fish oil pyrolysis: Chemical composition, Fuel, 89 (2010) 563-568. [36] S. J. Oh, G. G. Choi, J. S. Kim, Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural, Energy, 88 (2015) 697-702. [37] M. F. Gómez-Rico, R. Font, A. Fullana, I. Martín-Gullón, Thermogravimetric studyof different sewage sludges and their relationship with the nitrogen content, J.Anal. Appl., Pyrolysis 74 (2005) 421-428. [38] E. Kristensen, Characterization of biogenic organic matter by stepwise thermo-gravimetry (STG), Biogeochemistry, 9 (1990) 135-159. [39] K. K. Pandey, A. J. Pitman, FTIR studies of the changes in wood chemistry fol-lowing decay by brown-rot and white-rot fungi, Int. Biodeterior. Biodegrad. 52 (2003) 151-160. [40] X. Huang, J. P. Cao, P. Shi, X. Y. Zhao, X. B. Feng, Y. P. Zhao, X. Fan, X. Y. Wei, T. Takarada, Influences of Pyrolysis Conditions in the Production and Chemical Composition of the Bio-Oils from Fast Pyrolysis of Sewage Sludge, Journal of Analytical and Applied Pyrolysis, 110 (2014) 353-362. [41] C. Paenpong, A. Pattiya, Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass, Journal of Analytical and Applied Pyrolysis, 119 (2016) 40-51. [42] R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, S. R. A. Kersten, Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units, Ind. Eng. Chem. Res., 49 (2009) 1160-1168. [43] A. V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of biomass, Organic Geochemistry, 30 (1999) 1479-1493. [44] K. D. Maher, K. M. Kirkwood, M. R. Gray, D. C. Bressler, Pyrolytic decarboxylation and cracking of stearic acid, Industrial & Engineering Chemistry Research, 47 (2008) 5328-5336. [45] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Thermal cracking of canola oil: reaction products in the presence and absence of steam, Energy Fuels, 10 (1996) 1150-1162. [46] R. O. Idem, S. P. R. Katikaneni, N. N. Bakhshi, Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution, Fuel Processing Technology, 51 (1997) 101-125. [47] A. O. Adebanjo, A. K. Dalai, N. N. Bakhshi, Production of diesel-like fuel and other value-added chemicals from pyrolysis of animal fat, Energy Fuels, 19 (2005) 1735-1741. [48] A. Kubatova, J. St'avova, W. S. Seames, Y. Luo, S.M. Sadrameli, M. J. Linnen, G. V. Baglayeva, I. P. Smoliakova, E. I. Kozliak, Triacylglyceride thermal cracking: pathways to cyclic hydrocarbons, Energy Fuels, 26 (2012) 672-685. [49] S. H. Beis, Ö. Onay, Ö. M. Koçkar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions, Renewable Energy, 26 (2002) 21-32. [50] D. Ozcimen, F. Karaosmanoglu, Production and characterization of bio-oil and biochar from rapeseed cake, Renew Energy, 29 (2004) 779-787. [51] T. J. Buckley, Calculation of higher heating values of biomass materials and waste components from elemental analyses, Resources Conservation and Recycling, 5 (1991) 329-341 [52] M. Gülüm, A. Bilgin, Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends, Fuel Processing Technology, 149 (2016) 121-130. [53] J. S. Chang, J. C. Cheng, T. R. Ling, J. M. Chern, G. B. Wang, T. C. Chou, C. T. Kuo, Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process, 000(2016) 1-11 [54] T. V. Lee, S. R. Beck, A new integral approximation formula for kinetic analysis of nonisothermal TGA data, AIChE. J., 30 (1984) 517-519. [55] A. W. Coats, J. P. Redfern, Thermogravimetric Analysis: A Review, Analyst. 88 (1963) 906–924. [56] A. Ergudenler, A. E. Ghaly, Determination of reaction kinetics of wheat straw using thermogravimetric analysis, Appl Biochem Biotechnol, 34–35 (1992) 75–81. [57] A. S. Bining, B. M. Jenkins, Thermochemical reaction kinetics for rice straw from an approximate integral technique, In: ASAE Paper No. 92–6029, (1992). [58] H. Tian, C. Li, C. Yang, H. Shan, Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins, Chinese Journal of Chemical Engineering, 16 (2008) 394-400
|